This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite free module is a power of the ring module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| Assertion | frlmpwsfi | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → 𝐹 = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | fvex | ⊢ ( ringLMod ‘ 𝑅 ) ∈ V | |
| 3 | fnconstg | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ V → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 |
| 5 | dsmmfi | ⊢ ( ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 ∧ 𝐼 ∈ Fin ) → ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐼 ∈ Fin → ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 8 | rlmsca | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 12 | 1 | frlmval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → 𝐹 = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 13 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 14 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 15 | 13 14 | pwsval | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ Fin ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 16 | 2 15 | mpan | ⊢ ( 𝐼 ∈ Fin → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 18 | 11 12 17 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → 𝐹 = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |