This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmfibas.f | |- F = ( R freeLMod I ) |
|
| frlmfibas.n | |- N = ( Base ` R ) |
||
| Assertion | frlmfibas | |- ( ( R e. V /\ I e. Fin ) -> ( N ^m I ) = ( Base ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmfibas.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmfibas.n | |- N = ( Base ` R ) |
|
| 3 | elmapi | |- ( a e. ( N ^m I ) -> a : I --> N ) |
|
| 4 | 3 | adantl | |- ( ( I e. Fin /\ a e. ( N ^m I ) ) -> a : I --> N ) |
| 5 | simpl | |- ( ( I e. Fin /\ a e. ( N ^m I ) ) -> I e. Fin ) |
|
| 6 | fvexd | |- ( ( I e. Fin /\ a e. ( N ^m I ) ) -> ( 0g ` R ) e. _V ) |
|
| 7 | 4 5 6 | fdmfifsupp | |- ( ( I e. Fin /\ a e. ( N ^m I ) ) -> a finSupp ( 0g ` R ) ) |
| 8 | 7 | ralrimiva | |- ( I e. Fin -> A. a e. ( N ^m I ) a finSupp ( 0g ` R ) ) |
| 9 | 8 | adantl | |- ( ( R e. V /\ I e. Fin ) -> A. a e. ( N ^m I ) a finSupp ( 0g ` R ) ) |
| 10 | rabid2 | |- ( ( N ^m I ) = { a e. ( N ^m I ) | a finSupp ( 0g ` R ) } <-> A. a e. ( N ^m I ) a finSupp ( 0g ` R ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( R e. V /\ I e. Fin ) -> ( N ^m I ) = { a e. ( N ^m I ) | a finSupp ( 0g ` R ) } ) |
| 12 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 13 | eqid | |- { a e. ( N ^m I ) | a finSupp ( 0g ` R ) } = { a e. ( N ^m I ) | a finSupp ( 0g ` R ) } |
|
| 14 | 1 2 12 13 | frlmbas | |- ( ( R e. V /\ I e. Fin ) -> { a e. ( N ^m I ) | a finSupp ( 0g ` R ) } = ( Base ` F ) ) |
| 15 | 11 14 | eqtrd | |- ( ( R e. V /\ I e. Fin ) -> ( N ^m I ) = ( Base ` F ) ) |