This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| Assertion | fpwwe2lem1 | |- W C_ ( ~P A X. ~P ( A X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | simpll | |- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> x C_ A ) |
|
| 3 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 4 | 2 3 | sylibr | |- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> x e. ~P A ) |
| 5 | simplr | |- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> r C_ ( x X. x ) ) |
|
| 6 | xpss12 | |- ( ( x C_ A /\ x C_ A ) -> ( x X. x ) C_ ( A X. A ) ) |
|
| 7 | 2 2 6 | syl2anc | |- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> ( x X. x ) C_ ( A X. A ) ) |
| 8 | 5 7 | sstrd | |- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> r C_ ( A X. A ) ) |
| 9 | velpw | |- ( r e. ~P ( A X. A ) <-> r C_ ( A X. A ) ) |
|
| 10 | 8 9 | sylibr | |- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> r e. ~P ( A X. A ) ) |
| 11 | 4 10 | jca | |- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> ( x e. ~P A /\ r e. ~P ( A X. A ) ) ) |
| 12 | 11 | ssopab2i | |- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } C_ { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
| 13 | df-xp | |- ( ~P A X. ~P ( A X. A ) ) = { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
|
| 14 | 12 1 13 | 3sstr4i | |- W C_ ( ~P A X. ~P ( A X. A ) ) |