This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fprodfac | |- ( A e. NN0 -> ( ! ` A ) = prod_ k e. ( 1 ... A ) k ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
|
| 2 | facnn | |- ( A e. NN -> ( ! ` A ) = ( seq 1 ( x. , _I ) ` A ) ) |
|
| 3 | vex | |- k e. _V |
|
| 4 | fvi | |- ( k e. _V -> ( _I ` k ) = k ) |
|
| 5 | 3 4 | mp1i | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( _I ` k ) = k ) |
| 6 | elnnuz | |- ( A e. NN <-> A e. ( ZZ>= ` 1 ) ) |
|
| 7 | 6 | biimpi | |- ( A e. NN -> A e. ( ZZ>= ` 1 ) ) |
| 8 | elfznn | |- ( k e. ( 1 ... A ) -> k e. NN ) |
|
| 9 | 8 | nncnd | |- ( k e. ( 1 ... A ) -> k e. CC ) |
| 10 | 9 | adantl | |- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> k e. CC ) |
| 11 | 5 7 10 | fprodser | |- ( A e. NN -> prod_ k e. ( 1 ... A ) k = ( seq 1 ( x. , _I ) ` A ) ) |
| 12 | 2 11 | eqtr4d | |- ( A e. NN -> ( ! ` A ) = prod_ k e. ( 1 ... A ) k ) |
| 13 | prod0 | |- prod_ k e. (/) k = 1 |
|
| 14 | 13 | eqcomi | |- 1 = prod_ k e. (/) k |
| 15 | fveq2 | |- ( A = 0 -> ( ! ` A ) = ( ! ` 0 ) ) |
|
| 16 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 17 | 15 16 | eqtrdi | |- ( A = 0 -> ( ! ` A ) = 1 ) |
| 18 | oveq2 | |- ( A = 0 -> ( 1 ... A ) = ( 1 ... 0 ) ) |
|
| 19 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 20 | 18 19 | eqtrdi | |- ( A = 0 -> ( 1 ... A ) = (/) ) |
| 21 | 20 | prodeq1d | |- ( A = 0 -> prod_ k e. ( 1 ... A ) k = prod_ k e. (/) k ) |
| 22 | 14 17 21 | 3eqtr4a | |- ( A = 0 -> ( ! ` A ) = prod_ k e. ( 1 ... A ) k ) |
| 23 | 12 22 | jaoi | |- ( ( A e. NN \/ A = 0 ) -> ( ! ` A ) = prod_ k e. ( 1 ... A ) k ) |
| 24 | 1 23 | sylbi | |- ( A e. NN0 -> ( ! ` A ) = prod_ k e. ( 1 ... A ) k ) |