This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fprodfac | ⊢ ( 𝐴 ∈ ℕ0 → ( ! ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 1 ... 𝐴 ) 𝑘 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) | |
| 2 | facnn | ⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) = ( seq 1 ( · , I ) ‘ 𝐴 ) ) | |
| 3 | vex | ⊢ 𝑘 ∈ V | |
| 4 | fvi | ⊢ ( 𝑘 ∈ V → ( I ‘ 𝑘 ) = 𝑘 ) | |
| 5 | 3 4 | mp1i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → ( I ‘ 𝑘 ) = 𝑘 ) |
| 6 | elnnuz | ⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 7 | 6 | biimpi | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
| 8 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝐴 ) → 𝑘 ∈ ℕ ) | |
| 9 | 8 | nncnd | ⊢ ( 𝑘 ∈ ( 1 ... 𝐴 ) → 𝑘 ∈ ℂ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝐴 ) ) → 𝑘 ∈ ℂ ) |
| 11 | 5 7 10 | fprodser | ⊢ ( 𝐴 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... 𝐴 ) 𝑘 = ( seq 1 ( · , I ) ‘ 𝐴 ) ) |
| 12 | 2 11 | eqtr4d | ⊢ ( 𝐴 ∈ ℕ → ( ! ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 1 ... 𝐴 ) 𝑘 ) |
| 13 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝑘 = 1 | |
| 14 | 13 | eqcomi | ⊢ 1 = ∏ 𝑘 ∈ ∅ 𝑘 |
| 15 | fveq2 | ⊢ ( 𝐴 = 0 → ( ! ‘ 𝐴 ) = ( ! ‘ 0 ) ) | |
| 16 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ! ‘ 𝐴 ) = 1 ) |
| 18 | oveq2 | ⊢ ( 𝐴 = 0 → ( 1 ... 𝐴 ) = ( 1 ... 0 ) ) | |
| 19 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝐴 = 0 → ( 1 ... 𝐴 ) = ∅ ) |
| 21 | 20 | prodeq1d | ⊢ ( 𝐴 = 0 → ∏ 𝑘 ∈ ( 1 ... 𝐴 ) 𝑘 = ∏ 𝑘 ∈ ∅ 𝑘 ) |
| 22 | 14 17 21 | 3eqtr4a | ⊢ ( 𝐴 = 0 → ( ! ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 1 ... 𝐴 ) 𝑘 ) |
| 23 | 12 22 | jaoi | ⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( ! ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 1 ... 𝐴 ) 𝑘 ) |
| 24 | 1 23 | sylbi | ⊢ ( 𝐴 ∈ ℕ0 → ( ! ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 1 ... 𝐴 ) 𝑘 ) |