This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod1p.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| fprod1p.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| fprod1p.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐵 ) | ||
| Assertion | fprod1p | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod1p.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fprod1p.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 3 | fprod1p.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐵 ) | |
| 4 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 6 | 5 | elfzelzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 7 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 9 | 8 | ineq1d | ⊢ ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 10 | 6 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 11 | 10 | ltp1d | ⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
| 12 | fzdisj | ⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 14 | 9 13 | eqtr3d | ⊢ ( 𝜑 → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 15 | fzsplit | ⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 17 | 8 | uneq1d | ⊢ ( 𝜑 → ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 18 | 16 17 | eqtrd | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 19 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) | |
| 20 | 14 18 19 2 | fprodsplit | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( ∏ 𝑘 ∈ { 𝑀 } 𝐴 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
| 21 | 3 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 22 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 23 | 21 22 5 | rspcdva | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 24 | 3 | prodsn | ⊢ ( ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |
| 25 | 5 23 24 | syl2anc | ⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |
| 26 | 25 | oveq1d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 𝑀 } 𝐴 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |
| 27 | 20 26 | eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( 𝐵 · ∏ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 ) ) |