This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprb.1 | |- A e. _V |
|
| fprb.2 | |- B e. _V |
||
| Assertion | fprb | |- ( A =/= B -> ( F : { A , B } --> R <-> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprb.1 | |- A e. _V |
|
| 2 | fprb.2 | |- B e. _V |
|
| 3 | 1 | prid1 | |- A e. { A , B } |
| 4 | ffvelcdm | |- ( ( F : { A , B } --> R /\ A e. { A , B } ) -> ( F ` A ) e. R ) |
|
| 5 | 3 4 | mpan2 | |- ( F : { A , B } --> R -> ( F ` A ) e. R ) |
| 6 | 5 | adantr | |- ( ( F : { A , B } --> R /\ A =/= B ) -> ( F ` A ) e. R ) |
| 7 | 2 | prid2 | |- B e. { A , B } |
| 8 | ffvelcdm | |- ( ( F : { A , B } --> R /\ B e. { A , B } ) -> ( F ` B ) e. R ) |
|
| 9 | 7 8 | mpan2 | |- ( F : { A , B } --> R -> ( F ` B ) e. R ) |
| 10 | 9 | adantr | |- ( ( F : { A , B } --> R /\ A =/= B ) -> ( F ` B ) e. R ) |
| 11 | fvex | |- ( F ` A ) e. _V |
|
| 12 | 1 11 | fvpr1 | |- ( A =/= B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) ) |
| 13 | fvex | |- ( F ` B ) e. _V |
|
| 14 | 2 13 | fvpr2 | |- ( A =/= B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) |
| 15 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 16 | fveq2 | |- ( x = A -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) ) |
|
| 17 | 15 16 | eqeq12d | |- ( x = A -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) ) ) |
| 18 | eqcom | |- ( ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) ) |
|
| 19 | 17 18 | bitrdi | |- ( x = A -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) ) ) |
| 20 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 21 | fveq2 | |- ( x = B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) ) |
|
| 22 | 20 21 | eqeq12d | |- ( x = B -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) ) ) |
| 23 | eqcom | |- ( ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) |
|
| 24 | 22 23 | bitrdi | |- ( x = B -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) ) |
| 25 | 1 2 19 24 | ralpr | |- ( A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) /\ ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) ) |
| 26 | 12 14 25 | sylanbrc | |- ( A =/= B -> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) |
| 27 | 26 | adantl | |- ( ( F : { A , B } --> R /\ A =/= B ) -> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) |
| 28 | ffn | |- ( F : { A , B } --> R -> F Fn { A , B } ) |
|
| 29 | 1 2 11 13 | fpr | |- ( A =/= B -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } : { A , B } --> { ( F ` A ) , ( F ` B ) } ) |
| 30 | 29 | ffnd | |- ( A =/= B -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } Fn { A , B } ) |
| 31 | eqfnfv | |- ( ( F Fn { A , B } /\ { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } Fn { A , B } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) ) |
|
| 32 | 28 30 31 | syl2an | |- ( ( F : { A , B } --> R /\ A =/= B ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) ) |
| 33 | 27 32 | mpbird | |- ( ( F : { A , B } --> R /\ A =/= B ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 34 | opeq2 | |- ( x = ( F ` A ) -> <. A , x >. = <. A , ( F ` A ) >. ) |
|
| 35 | 34 | preq1d | |- ( x = ( F ` A ) -> { <. A , x >. , <. B , y >. } = { <. A , ( F ` A ) >. , <. B , y >. } ) |
| 36 | 35 | eqeq2d | |- ( x = ( F ` A ) -> ( F = { <. A , x >. , <. B , y >. } <-> F = { <. A , ( F ` A ) >. , <. B , y >. } ) ) |
| 37 | opeq2 | |- ( y = ( F ` B ) -> <. B , y >. = <. B , ( F ` B ) >. ) |
|
| 38 | 37 | preq2d | |- ( y = ( F ` B ) -> { <. A , ( F ` A ) >. , <. B , y >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 39 | 38 | eqeq2d | |- ( y = ( F ` B ) -> ( F = { <. A , ( F ` A ) >. , <. B , y >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
| 40 | 36 39 | rspc2ev | |- ( ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) -> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) |
| 41 | 6 10 33 40 | syl3anc | |- ( ( F : { A , B } --> R /\ A =/= B ) -> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) |
| 42 | 41 | expcom | |- ( A =/= B -> ( F : { A , B } --> R -> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) ) |
| 43 | vex | |- x e. _V |
|
| 44 | vex | |- y e. _V |
|
| 45 | 1 2 43 44 | fpr | |- ( A =/= B -> { <. A , x >. , <. B , y >. } : { A , B } --> { x , y } ) |
| 46 | prssi | |- ( ( x e. R /\ y e. R ) -> { x , y } C_ R ) |
|
| 47 | fss | |- ( ( { <. A , x >. , <. B , y >. } : { A , B } --> { x , y } /\ { x , y } C_ R ) -> { <. A , x >. , <. B , y >. } : { A , B } --> R ) |
|
| 48 | 45 46 47 | syl2an | |- ( ( A =/= B /\ ( x e. R /\ y e. R ) ) -> { <. A , x >. , <. B , y >. } : { A , B } --> R ) |
| 49 | 48 | ex | |- ( A =/= B -> ( ( x e. R /\ y e. R ) -> { <. A , x >. , <. B , y >. } : { A , B } --> R ) ) |
| 50 | feq1 | |- ( F = { <. A , x >. , <. B , y >. } -> ( F : { A , B } --> R <-> { <. A , x >. , <. B , y >. } : { A , B } --> R ) ) |
|
| 51 | 50 | biimprcd | |- ( { <. A , x >. , <. B , y >. } : { A , B } --> R -> ( F = { <. A , x >. , <. B , y >. } -> F : { A , B } --> R ) ) |
| 52 | 49 51 | syl6 | |- ( A =/= B -> ( ( x e. R /\ y e. R ) -> ( F = { <. A , x >. , <. B , y >. } -> F : { A , B } --> R ) ) ) |
| 53 | 52 | rexlimdvv | |- ( A =/= B -> ( E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } -> F : { A , B } --> R ) ) |
| 54 | 42 53 | impbid | |- ( A =/= B -> ( F : { A , B } --> R <-> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) ) |