This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpr.1 | |- A e. _V |
|
| fpr.2 | |- B e. _V |
||
| fpr.3 | |- C e. _V |
||
| fpr.4 | |- D e. _V |
||
| Assertion | fpr | |- ( A =/= B -> { <. A , C >. , <. B , D >. } : { A , B } --> { C , D } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpr.1 | |- A e. _V |
|
| 2 | fpr.2 | |- B e. _V |
|
| 3 | fpr.3 | |- C e. _V |
|
| 4 | fpr.4 | |- D e. _V |
|
| 5 | 1 2 3 4 | funpr | |- ( A =/= B -> Fun { <. A , C >. , <. B , D >. } ) |
| 6 | 3 4 | dmprop | |- dom { <. A , C >. , <. B , D >. } = { A , B } |
| 7 | df-fn | |- ( { <. A , C >. , <. B , D >. } Fn { A , B } <-> ( Fun { <. A , C >. , <. B , D >. } /\ dom { <. A , C >. , <. B , D >. } = { A , B } ) ) |
|
| 8 | 5 6 7 | sylanblrc | |- ( A =/= B -> { <. A , C >. , <. B , D >. } Fn { A , B } ) |
| 9 | df-pr | |- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
|
| 10 | 9 | rneqi | |- ran { <. A , C >. , <. B , D >. } = ran ( { <. A , C >. } u. { <. B , D >. } ) |
| 11 | rnun | |- ran ( { <. A , C >. } u. { <. B , D >. } ) = ( ran { <. A , C >. } u. ran { <. B , D >. } ) |
|
| 12 | 1 | rnsnop | |- ran { <. A , C >. } = { C } |
| 13 | 2 | rnsnop | |- ran { <. B , D >. } = { D } |
| 14 | 12 13 | uneq12i | |- ( ran { <. A , C >. } u. ran { <. B , D >. } ) = ( { C } u. { D } ) |
| 15 | df-pr | |- { C , D } = ( { C } u. { D } ) |
|
| 16 | 14 15 | eqtr4i | |- ( ran { <. A , C >. } u. ran { <. B , D >. } ) = { C , D } |
| 17 | 10 11 16 | 3eqtri | |- ran { <. A , C >. , <. B , D >. } = { C , D } |
| 18 | 17 | eqimssi | |- ran { <. A , C >. , <. B , D >. } C_ { C , D } |
| 19 | df-f | |- ( { <. A , C >. , <. B , D >. } : { A , B } --> { C , D } <-> ( { <. A , C >. , <. B , D >. } Fn { A , B } /\ ran { <. A , C >. , <. B , D >. } C_ { C , D } ) ) |
|
| 20 | 8 18 19 | sylanblrc | |- ( A =/= B -> { <. A , C >. , <. B , D >. } : { A , B } --> { C , D } ) |