This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvtp1.1 | |- A e. _V |
|
| fvtp1.4 | |- D e. _V |
||
| Assertion | fvtp1 | |- ( ( A =/= B /\ A =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvtp1.1 | |- A e. _V |
|
| 2 | fvtp1.4 | |- D e. _V |
|
| 3 | df-tp | |- { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) |
|
| 4 | 3 | fveq1i | |- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) |
| 5 | necom | |- ( A =/= C <-> C =/= A ) |
|
| 6 | fvunsn | |- ( C =/= A -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
|
| 7 | 5 6 | sylbi | |- ( A =/= C -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = ( { <. A , D >. , <. B , E >. } ` A ) ) |
| 8 | 1 2 | fvpr1 | |- ( A =/= B -> ( { <. A , D >. , <. B , E >. } ` A ) = D ) |
| 9 | 7 8 | sylan9eqr | |- ( ( A =/= B /\ A =/= C ) -> ( ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ` A ) = D ) |
| 10 | 4 9 | eqtrid | |- ( ( A =/= B /\ A =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` A ) = D ) |