This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of fodomfi as of 20-Jun-2025. (Contributed by NM, 23-Mar-2006) (Proof shortened by Mario Carneiro, 16-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomfiOLD | |- ( ( A e. Fin /\ F : A -onto-> B ) -> B ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foima | |- ( F : A -onto-> B -> ( F " A ) = B ) |
|
| 2 | 1 | adantl | |- ( ( A e. Fin /\ F : A -onto-> B ) -> ( F " A ) = B ) |
| 3 | imaeq2 | |- ( x = (/) -> ( F " x ) = ( F " (/) ) ) |
|
| 4 | ima0 | |- ( F " (/) ) = (/) |
|
| 5 | 3 4 | eqtrdi | |- ( x = (/) -> ( F " x ) = (/) ) |
| 6 | id | |- ( x = (/) -> x = (/) ) |
|
| 7 | 5 6 | breq12d | |- ( x = (/) -> ( ( F " x ) ~<_ x <-> (/) ~<_ (/) ) ) |
| 8 | 7 | imbi2d | |- ( x = (/) -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> (/) ~<_ (/) ) ) ) |
| 9 | imaeq2 | |- ( x = y -> ( F " x ) = ( F " y ) ) |
|
| 10 | id | |- ( x = y -> x = y ) |
|
| 11 | 9 10 | breq12d | |- ( x = y -> ( ( F " x ) ~<_ x <-> ( F " y ) ~<_ y ) ) |
| 12 | 11 | imbi2d | |- ( x = y -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " y ) ~<_ y ) ) ) |
| 13 | imaeq2 | |- ( x = ( y u. { z } ) -> ( F " x ) = ( F " ( y u. { z } ) ) ) |
|
| 14 | id | |- ( x = ( y u. { z } ) -> x = ( y u. { z } ) ) |
|
| 15 | 13 14 | breq12d | |- ( x = ( y u. { z } ) -> ( ( F " x ) ~<_ x <-> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) |
| 16 | 15 | imbi2d | |- ( x = ( y u. { z } ) -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) |
| 17 | imaeq2 | |- ( x = A -> ( F " x ) = ( F " A ) ) |
|
| 18 | id | |- ( x = A -> x = A ) |
|
| 19 | 17 18 | breq12d | |- ( x = A -> ( ( F " x ) ~<_ x <-> ( F " A ) ~<_ A ) ) |
| 20 | 19 | imbi2d | |- ( x = A -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " A ) ~<_ A ) ) ) |
| 21 | 0ex | |- (/) e. _V |
|
| 22 | 21 | 0dom | |- (/) ~<_ (/) |
| 23 | 22 | a1i | |- ( F Fn A -> (/) ~<_ (/) ) |
| 24 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 25 | 24 | ad2antrl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> Fun F ) |
| 26 | funressn | |- ( Fun F -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
|
| 27 | rnss | |- ( ( F |` { z } ) C_ { <. z , ( F ` z ) >. } -> ran ( F |` { z } ) C_ ran { <. z , ( F ` z ) >. } ) |
|
| 28 | 25 26 27 | 3syl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ran ( F |` { z } ) C_ ran { <. z , ( F ` z ) >. } ) |
| 29 | df-ima | |- ( F " { z } ) = ran ( F |` { z } ) |
|
| 30 | vex | |- z e. _V |
|
| 31 | 30 | rnsnop | |- ran { <. z , ( F ` z ) >. } = { ( F ` z ) } |
| 32 | 31 | eqcomi | |- { ( F ` z ) } = ran { <. z , ( F ` z ) >. } |
| 33 | 28 29 32 | 3sstr4g | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) C_ { ( F ` z ) } ) |
| 34 | snex | |- { ( F ` z ) } e. _V |
|
| 35 | ssexg | |- ( ( ( F " { z } ) C_ { ( F ` z ) } /\ { ( F ` z ) } e. _V ) -> ( F " { z } ) e. _V ) |
|
| 36 | 33 34 35 | sylancl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) e. _V ) |
| 37 | fvi | |- ( ( F " { z } ) e. _V -> ( _I ` ( F " { z } ) ) = ( F " { z } ) ) |
|
| 38 | 36 37 | syl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( _I ` ( F " { z } ) ) = ( F " { z } ) ) |
| 39 | 38 | uneq2d | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) = ( ( F " y ) u. ( F " { z } ) ) ) |
| 40 | imaundi | |- ( F " ( y u. { z } ) ) = ( ( F " y ) u. ( F " { z } ) ) |
|
| 41 | 39 40 | eqtr4di | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) = ( F " ( y u. { z } ) ) ) |
| 42 | simprr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " y ) ~<_ y ) |
|
| 43 | ssdomg | |- ( { ( F ` z ) } e. _V -> ( ( F " { z } ) C_ { ( F ` z ) } -> ( F " { z } ) ~<_ { ( F ` z ) } ) ) |
|
| 44 | 34 33 43 | mpsyl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) ~<_ { ( F ` z ) } ) |
| 45 | fvex | |- ( F ` z ) e. _V |
|
| 46 | 45 | ensn1 | |- { ( F ` z ) } ~~ 1o |
| 47 | 30 | ensn1 | |- { z } ~~ 1o |
| 48 | 46 47 | entr4i | |- { ( F ` z ) } ~~ { z } |
| 49 | domentr | |- ( ( ( F " { z } ) ~<_ { ( F ` z ) } /\ { ( F ` z ) } ~~ { z } ) -> ( F " { z } ) ~<_ { z } ) |
|
| 50 | 44 48 49 | sylancl | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) ~<_ { z } ) |
| 51 | 38 50 | eqbrtrd | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( _I ` ( F " { z } ) ) ~<_ { z } ) |
| 52 | simplr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> -. z e. y ) |
|
| 53 | disjsn | |- ( ( y i^i { z } ) = (/) <-> -. z e. y ) |
|
| 54 | 52 53 | sylibr | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( y i^i { z } ) = (/) ) |
| 55 | undom | |- ( ( ( ( F " y ) ~<_ y /\ ( _I ` ( F " { z } ) ) ~<_ { z } ) /\ ( y i^i { z } ) = (/) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) ~<_ ( y u. { z } ) ) |
|
| 56 | 42 51 54 55 | syl21anc | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) ~<_ ( y u. { z } ) ) |
| 57 | 41 56 | eqbrtrrd | |- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) |
| 58 | 57 | exp32 | |- ( ( y e. Fin /\ -. z e. y ) -> ( F Fn A -> ( ( F " y ) ~<_ y -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) |
| 59 | 58 | a2d | |- ( ( y e. Fin /\ -. z e. y ) -> ( ( F Fn A -> ( F " y ) ~<_ y ) -> ( F Fn A -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) |
| 60 | 8 12 16 20 23 59 | findcard2s | |- ( A e. Fin -> ( F Fn A -> ( F " A ) ~<_ A ) ) |
| 61 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
| 62 | 60 61 | impel | |- ( ( A e. Fin /\ F : A -onto-> B ) -> ( F " A ) ~<_ A ) |
| 63 | 2 62 | eqbrtrrd | |- ( ( A e. Fin /\ F : A -onto-> B ) -> B ~<_ A ) |