This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function whose domain has at most three elements can be represented as a set of at most three ordered pairs. (Contributed by AV, 26-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnprb.a | |- A e. _V |
|
| fnprb.b | |- B e. _V |
||
| fntpb.c | |- C e. _V |
||
| Assertion | fntpb | |- ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnprb.a | |- A e. _V |
|
| 2 | fnprb.b | |- B e. _V |
|
| 3 | fntpb.c | |- C e. _V |
|
| 4 | 1 2 | fnprb | |- ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 5 | tpidm23 | |- { A , B , B } = { A , B } |
|
| 6 | 5 | eqcomi | |- { A , B } = { A , B , B } |
| 7 | 6 | fneq2i | |- ( F Fn { A , B } <-> F Fn { A , B , B } ) |
| 8 | tpidm23 | |- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } |
|
| 9 | 8 | eqcomi | |- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } |
| 10 | 9 | eqeq2i | |- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) |
| 11 | 4 7 10 | 3bitr3i | |- ( F Fn { A , B , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) |
| 12 | 11 | a1i | |- ( B = C -> ( F Fn { A , B , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) ) |
| 13 | tpeq3 | |- ( B = C -> { A , B , B } = { A , B , C } ) |
|
| 14 | 13 | fneq2d | |- ( B = C -> ( F Fn { A , B , B } <-> F Fn { A , B , C } ) ) |
| 15 | id | |- ( B = C -> B = C ) |
|
| 16 | fveq2 | |- ( B = C -> ( F ` B ) = ( F ` C ) ) |
|
| 17 | 15 16 | opeq12d | |- ( B = C -> <. B , ( F ` B ) >. = <. C , ( F ` C ) >. ) |
| 18 | 17 | tpeq3d | |- ( B = C -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 19 | 18 | eqeq2d | |- ( B = C -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 20 | 12 14 19 | 3bitr3d | |- ( B = C -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 21 | 20 | a1d | |- ( B = C -> ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) ) |
| 22 | fndm | |- ( F Fn { A , B , C } -> dom F = { A , B , C } ) |
|
| 23 | fvex | |- ( F ` A ) e. _V |
|
| 24 | fvex | |- ( F ` B ) e. _V |
|
| 25 | fvex | |- ( F ` C ) e. _V |
|
| 26 | 23 24 25 | dmtpop | |- dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } = { A , B , C } |
| 27 | 22 26 | eqtr4di | |- ( F Fn { A , B , C } -> dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 28 | 27 | adantl | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 29 | 22 | adantl | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> dom F = { A , B , C } ) |
| 30 | 29 | eleq2d | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. dom F <-> x e. { A , B , C } ) ) |
| 31 | vex | |- x e. _V |
|
| 32 | 31 | eltp | |- ( x e. { A , B , C } <-> ( x = A \/ x = B \/ x = C ) ) |
| 33 | 1 23 | fvtp1 | |- ( ( A =/= B /\ A =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) = ( F ` A ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) = ( F ` A ) ) |
| 35 | 34 | eqcomd | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) |
| 36 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 37 | fveq2 | |- ( x = A -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) |
|
| 38 | 36 37 | eqeq12d | |- ( x = A -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) ) |
| 39 | 35 38 | syl5ibrcom | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = A -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 40 | 2 24 | fvtp2 | |- ( ( A =/= B /\ B =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) = ( F ` B ) ) |
| 41 | 40 | ad4ant13 | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) = ( F ` B ) ) |
| 42 | 41 | eqcomd | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) |
| 43 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 44 | fveq2 | |- ( x = B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) |
|
| 45 | 43 44 | eqeq12d | |- ( x = B -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) ) |
| 46 | 42 45 | syl5ibrcom | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = B -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 47 | 3 25 | fvtp3 | |- ( ( A =/= C /\ B =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) = ( F ` C ) ) |
| 48 | 47 | ad4ant23 | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) = ( F ` C ) ) |
| 49 | 48 | eqcomd | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` C ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) |
| 50 | fveq2 | |- ( x = C -> ( F ` x ) = ( F ` C ) ) |
|
| 51 | fveq2 | |- ( x = C -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) |
|
| 52 | 50 51 | eqeq12d | |- ( x = C -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` C ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) ) |
| 53 | 49 52 | syl5ibrcom | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = C -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 54 | 39 46 53 | 3jaod | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( ( x = A \/ x = B \/ x = C ) -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 55 | 32 54 | biimtrid | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. { A , B , C } -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 56 | 30 55 | sylbid | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. dom F -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) |
| 57 | 56 | ralrimiv | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) |
| 58 | fnfun | |- ( F Fn { A , B , C } -> Fun F ) |
|
| 59 | 1 2 3 23 24 25 | funtp | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 60 | 59 | 3expa | |- ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 61 | eqfunfv | |- ( ( Fun F /\ Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } <-> ( dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } /\ A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) ) |
|
| 62 | 58 60 61 | syl2anr | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } <-> ( dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } /\ A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) ) |
| 63 | 28 57 62 | mpbir2and | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 64 | 1 2 3 23 24 25 | fntp | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) |
| 65 | 64 | 3expa | |- ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) |
| 66 | fneq1 | |- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } -> ( F Fn { A , B , C } <-> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) ) |
|
| 67 | 66 | biimprd | |- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } -> F Fn { A , B , C } ) ) |
| 68 | 65 67 | mpan9 | |- ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) -> F Fn { A , B , C } ) |
| 69 | 63 68 | impbida | |- ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 70 | 69 | expcom | |- ( B =/= C -> ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) ) |
| 71 | 21 70 | pm2.61ine | |- ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 72 | 1 3 | fnprb | |- ( F Fn { A , C } <-> F = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) |
| 73 | tpidm12 | |- { A , A , C } = { A , C } |
|
| 74 | 73 | eqcomi | |- { A , C } = { A , A , C } |
| 75 | 74 | fneq2i | |- ( F Fn { A , C } <-> F Fn { A , A , C } ) |
| 76 | tpidm12 | |- { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } |
|
| 77 | 76 | eqcomi | |- { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } |
| 78 | 77 | eqeq2i | |- ( F = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) |
| 79 | 72 75 78 | 3bitr3i | |- ( F Fn { A , A , C } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) |
| 80 | 79 | a1i | |- ( A = B -> ( F Fn { A , A , C } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) ) |
| 81 | tpeq2 | |- ( A = B -> { A , A , C } = { A , B , C } ) |
|
| 82 | 81 | fneq2d | |- ( A = B -> ( F Fn { A , A , C } <-> F Fn { A , B , C } ) ) |
| 83 | id | |- ( A = B -> A = B ) |
|
| 84 | fveq2 | |- ( A = B -> ( F ` A ) = ( F ` B ) ) |
|
| 85 | 83 84 | opeq12d | |- ( A = B -> <. A , ( F ` A ) >. = <. B , ( F ` B ) >. ) |
| 86 | 85 | tpeq2d | |- ( A = B -> { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 87 | 86 | eqeq2d | |- ( A = B -> ( F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 88 | 80 82 87 | 3bitr3d | |- ( A = B -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 89 | tpidm13 | |- { A , B , A } = { A , B } |
|
| 90 | 89 | eqcomi | |- { A , B } = { A , B , A } |
| 91 | 90 | fneq2i | |- ( F Fn { A , B } <-> F Fn { A , B , A } ) |
| 92 | tpidm13 | |- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } |
|
| 93 | 92 | eqcomi | |- { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } |
| 94 | 93 | eqeq2i | |- ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) |
| 95 | 4 91 94 | 3bitr3i | |- ( F Fn { A , B , A } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) |
| 96 | 95 | a1i | |- ( A = C -> ( F Fn { A , B , A } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) ) |
| 97 | tpeq3 | |- ( A = C -> { A , B , A } = { A , B , C } ) |
|
| 98 | 97 | fneq2d | |- ( A = C -> ( F Fn { A , B , A } <-> F Fn { A , B , C } ) ) |
| 99 | id | |- ( A = C -> A = C ) |
|
| 100 | fveq2 | |- ( A = C -> ( F ` A ) = ( F ` C ) ) |
|
| 101 | 99 100 | opeq12d | |- ( A = C -> <. A , ( F ` A ) >. = <. C , ( F ` C ) >. ) |
| 102 | 101 | tpeq3d | |- ( A = C -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |
| 103 | 102 | eqeq2d | |- ( A = C -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 104 | 96 98 103 | 3bitr3d | |- ( A = C -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) |
| 105 | 71 88 104 | pm2.61iine | |- ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |