This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnpr2g | |- ( ( A e. V /\ B e. W ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 | |- ( a = A -> { a , b } = { A , b } ) |
|
| 2 | 1 | fneq2d | |- ( a = A -> ( F Fn { a , b } <-> F Fn { A , b } ) ) |
| 3 | id | |- ( a = A -> a = A ) |
|
| 4 | fveq2 | |- ( a = A -> ( F ` a ) = ( F ` A ) ) |
|
| 5 | 3 4 | opeq12d | |- ( a = A -> <. a , ( F ` a ) >. = <. A , ( F ` A ) >. ) |
| 6 | 5 | preq1d | |- ( a = A -> { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) |
| 7 | 6 | eqeq2d | |- ( a = A -> ( F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) ) |
| 8 | 2 7 | bibi12d | |- ( a = A -> ( ( F Fn { a , b } <-> F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } ) <-> ( F Fn { A , b } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) ) ) |
| 9 | preq2 | |- ( b = B -> { A , b } = { A , B } ) |
|
| 10 | 9 | fneq2d | |- ( b = B -> ( F Fn { A , b } <-> F Fn { A , B } ) ) |
| 11 | id | |- ( b = B -> b = B ) |
|
| 12 | fveq2 | |- ( b = B -> ( F ` b ) = ( F ` B ) ) |
|
| 13 | 11 12 | opeq12d | |- ( b = B -> <. b , ( F ` b ) >. = <. B , ( F ` B ) >. ) |
| 14 | 13 | preq2d | |- ( b = B -> { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 15 | 14 | eqeq2d | |- ( b = B -> ( F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
| 16 | 10 15 | bibi12d | |- ( b = B -> ( ( F Fn { A , b } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) <-> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) ) |
| 17 | vex | |- a e. _V |
|
| 18 | vex | |- b e. _V |
|
| 19 | 17 18 | fnprb | |- ( F Fn { a , b } <-> F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } ) |
| 20 | 8 16 19 | vtocl2g | |- ( ( A e. V /\ B e. W ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |