This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvtp2.1 | |- B e. _V |
|
| fvtp2.4 | |- E e. _V |
||
| Assertion | fvtp2 | |- ( ( A =/= B /\ B =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvtp2.1 | |- B e. _V |
|
| 2 | fvtp2.4 | |- E e. _V |
|
| 3 | tprot | |- { <. A , D >. , <. B , E >. , <. C , F >. } = { <. B , E >. , <. C , F >. , <. A , D >. } |
|
| 4 | 3 | fveq1i | |- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) |
| 5 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 6 | 1 2 | fvtp1 | |- ( ( B =/= C /\ B =/= A ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
| 7 | 6 | ancoms | |- ( ( B =/= A /\ B =/= C ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
| 8 | 5 7 | sylanb | |- ( ( A =/= B /\ B =/= C ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
| 9 | 4 8 | eqtrid | |- ( ( A =/= B /\ B =/= C ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = E ) |