This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnoprabg | |- ( A. x A. y ( ph -> E! z ps ) -> { <. <. x , y >. , z >. | ( ph /\ ps ) } Fn { <. x , y >. | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo | |- ( E! z ps -> E* z ps ) |
|
| 2 | 1 | imim2i | |- ( ( ph -> E! z ps ) -> ( ph -> E* z ps ) ) |
| 3 | moanimv | |- ( E* z ( ph /\ ps ) <-> ( ph -> E* z ps ) ) |
|
| 4 | 2 3 | sylibr | |- ( ( ph -> E! z ps ) -> E* z ( ph /\ ps ) ) |
| 5 | 4 | 2alimi | |- ( A. x A. y ( ph -> E! z ps ) -> A. x A. y E* z ( ph /\ ps ) ) |
| 6 | funoprabg | |- ( A. x A. y E* z ( ph /\ ps ) -> Fun { <. <. x , y >. , z >. | ( ph /\ ps ) } ) |
|
| 7 | 5 6 | syl | |- ( A. x A. y ( ph -> E! z ps ) -> Fun { <. <. x , y >. , z >. | ( ph /\ ps ) } ) |
| 8 | dmoprab | |- dom { <. <. x , y >. , z >. | ( ph /\ ps ) } = { <. x , y >. | E. z ( ph /\ ps ) } |
|
| 9 | nfa1 | |- F/ x A. x A. y ( ph -> E! z ps ) |
|
| 10 | nfa2 | |- F/ y A. x A. y ( ph -> E! z ps ) |
|
| 11 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 12 | 11 | exlimiv | |- ( E. z ( ph /\ ps ) -> ph ) |
| 13 | euex | |- ( E! z ps -> E. z ps ) |
|
| 14 | 13 | imim2i | |- ( ( ph -> E! z ps ) -> ( ph -> E. z ps ) ) |
| 15 | 14 | ancld | |- ( ( ph -> E! z ps ) -> ( ph -> ( ph /\ E. z ps ) ) ) |
| 16 | 19.42v | |- ( E. z ( ph /\ ps ) <-> ( ph /\ E. z ps ) ) |
|
| 17 | 15 16 | imbitrrdi | |- ( ( ph -> E! z ps ) -> ( ph -> E. z ( ph /\ ps ) ) ) |
| 18 | 12 17 | impbid2 | |- ( ( ph -> E! z ps ) -> ( E. z ( ph /\ ps ) <-> ph ) ) |
| 19 | 18 | sps | |- ( A. y ( ph -> E! z ps ) -> ( E. z ( ph /\ ps ) <-> ph ) ) |
| 20 | 19 | sps | |- ( A. x A. y ( ph -> E! z ps ) -> ( E. z ( ph /\ ps ) <-> ph ) ) |
| 21 | 9 10 20 | opabbid | |- ( A. x A. y ( ph -> E! z ps ) -> { <. x , y >. | E. z ( ph /\ ps ) } = { <. x , y >. | ph } ) |
| 22 | 8 21 | eqtrid | |- ( A. x A. y ( ph -> E! z ps ) -> dom { <. <. x , y >. , z >. | ( ph /\ ps ) } = { <. x , y >. | ph } ) |
| 23 | df-fn | |- ( { <. <. x , y >. , z >. | ( ph /\ ps ) } Fn { <. x , y >. | ph } <-> ( Fun { <. <. x , y >. , z >. | ( ph /\ ps ) } /\ dom { <. <. x , y >. , z >. | ( ph /\ ps ) } = { <. x , y >. | ph } ) ) |
|
| 24 | 7 22 23 | sylanbrc | |- ( A. x A. y ( ph -> E! z ps ) -> { <. <. x , y >. , z >. | ( ph /\ ps ) } Fn { <. x , y >. | ph } ) |