This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funoprabg | |- ( A. x A. y E* z ph -> Fun { <. <. x , y >. , z >. | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mosubopt | |- ( A. x A. y E* z ph -> E* z E. x E. y ( w = <. x , y >. /\ ph ) ) |
|
| 2 | 1 | alrimiv | |- ( A. x A. y E* z ph -> A. w E* z E. x E. y ( w = <. x , y >. /\ ph ) ) |
| 3 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 4 | 3 | funeqi | |- ( Fun { <. <. x , y >. , z >. | ph } <-> Fun { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } ) |
| 5 | funopab | |- ( Fun { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } <-> A. w E* z E. x E. y ( w = <. x , y >. /\ ph ) ) |
|
| 6 | 4 5 | bitr2i | |- ( A. w E* z E. x E. y ( w = <. x , y >. /\ ph ) <-> Fun { <. <. x , y >. , z >. | ph } ) |
| 7 | 2 6 | sylib | |- ( A. x A. y E* z ph -> Fun { <. <. x , y >. , z >. | ph } ) |