This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabbid.1 | |- F/ x ph |
|
| opabbid.2 | |- F/ y ph |
||
| opabbid.3 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | opabbid | |- ( ph -> { <. x , y >. | ps } = { <. x , y >. | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbid.1 | |- F/ x ph |
|
| 2 | opabbid.2 | |- F/ y ph |
|
| 3 | opabbid.3 | |- ( ph -> ( ps <-> ch ) ) |
|
| 4 | 3 | anbi2d | |- ( ph -> ( ( z = <. x , y >. /\ ps ) <-> ( z = <. x , y >. /\ ch ) ) ) |
| 5 | 2 4 | exbid | |- ( ph -> ( E. y ( z = <. x , y >. /\ ps ) <-> E. y ( z = <. x , y >. /\ ch ) ) ) |
| 6 | 1 5 | exbid | |- ( ph -> ( E. x E. y ( z = <. x , y >. /\ ps ) <-> E. x E. y ( z = <. x , y >. /\ ch ) ) ) |
| 7 | 6 | abbidv | |- ( ph -> { z | E. x E. y ( z = <. x , y >. /\ ps ) } = { z | E. x E. y ( z = <. x , y >. /\ ch ) } ) |
| 8 | df-opab | |- { <. x , y >. | ps } = { z | E. x E. y ( z = <. x , y >. /\ ps ) } |
|
| 9 | df-opab | |- { <. x , y >. | ch } = { z | E. x E. y ( z = <. x , y >. /\ ch ) } |
|
| 10 | 7 8 9 | 3eqtr4g | |- ( ph -> { <. x , y >. | ps } = { <. x , y >. | ch } ) |