This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmoprab | |- dom { <. <. x , y >. , z >. | ph } = { <. x , y >. | E. z ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 2 | 1 | dmeqi | |- dom { <. <. x , y >. , z >. | ph } = dom { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
| 3 | dmopab | |- dom { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. z E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 4 | exrot3 | |- ( E. z E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x E. y E. z ( w = <. x , y >. /\ ph ) ) |
|
| 5 | 19.42v | |- ( E. z ( w = <. x , y >. /\ ph ) <-> ( w = <. x , y >. /\ E. z ph ) ) |
|
| 6 | 5 | 2exbii | |- ( E. x E. y E. z ( w = <. x , y >. /\ ph ) <-> E. x E. y ( w = <. x , y >. /\ E. z ph ) ) |
| 7 | 4 6 | bitri | |- ( E. z E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x E. y ( w = <. x , y >. /\ E. z ph ) ) |
| 8 | 7 | abbii | |- { w | E. z E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. x E. y ( w = <. x , y >. /\ E. z ph ) } |
| 9 | df-opab | |- { <. x , y >. | E. z ph } = { w | E. x E. y ( w = <. x , y >. /\ E. z ph ) } |
|
| 10 | 8 9 | eqtr4i | |- { w | E. z E. x E. y ( w = <. x , y >. /\ ph ) } = { <. x , y >. | E. z ph } |
| 11 | 2 3 10 | 3eqtri | |- dom { <. <. x , y >. , z >. | ph } = { <. x , y >. | E. z ph } |