This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 15-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdg2sstep.v | |- V = ( Vtx ` G ) |
|
| finsumvtxdg2sstep.e | |- E = ( iEdg ` G ) |
||
| finsumvtxdg2sstep.k | |- K = ( V \ { N } ) |
||
| finsumvtxdg2sstep.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
||
| finsumvtxdg2sstep.p | |- P = ( E |` I ) |
||
| finsumvtxdg2sstep.s | |- S = <. K , P >. |
||
| finsumvtxdg2ssteplem.j | |- J = { i e. dom E | N e. ( E ` i ) } |
||
| Assertion | finsumvtxdg2ssteplem1 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( # ` E ) = ( ( # ` P ) + ( # ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdg2sstep.v | |- V = ( Vtx ` G ) |
|
| 2 | finsumvtxdg2sstep.e | |- E = ( iEdg ` G ) |
|
| 3 | finsumvtxdg2sstep.k | |- K = ( V \ { N } ) |
|
| 4 | finsumvtxdg2sstep.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
|
| 5 | finsumvtxdg2sstep.p | |- P = ( E |` I ) |
|
| 6 | finsumvtxdg2sstep.s | |- S = <. K , P >. |
|
| 7 | finsumvtxdg2ssteplem.j | |- J = { i e. dom E | N e. ( E ` i ) } |
|
| 8 | upgruhgr | |- ( G e. UPGraph -> G e. UHGraph ) |
|
| 9 | 2 | uhgrfun | |- ( G e. UHGraph -> Fun E ) |
| 10 | 8 9 | syl | |- ( G e. UPGraph -> Fun E ) |
| 11 | 10 | ad2antrr | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> Fun E ) |
| 12 | simprr | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> E e. Fin ) |
|
| 13 | 4 | ssrab3 | |- I C_ dom E |
| 14 | 13 | a1i | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> I C_ dom E ) |
| 15 | hashreshashfun | |- ( ( Fun E /\ E e. Fin /\ I C_ dom E ) -> ( # ` E ) = ( ( # ` ( E |` I ) ) + ( # ` ( dom E \ I ) ) ) ) |
|
| 16 | 11 12 14 15 | syl3anc | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( # ` E ) = ( ( # ` ( E |` I ) ) + ( # ` ( dom E \ I ) ) ) ) |
| 17 | 5 | eqcomi | |- ( E |` I ) = P |
| 18 | 17 | fveq2i | |- ( # ` ( E |` I ) ) = ( # ` P ) |
| 19 | 18 | a1i | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( # ` ( E |` I ) ) = ( # ` P ) ) |
| 20 | notrab | |- ( dom E \ { i e. dom E | N e/ ( E ` i ) } ) = { i e. dom E | -. N e/ ( E ` i ) } |
|
| 21 | 4 | difeq2i | |- ( dom E \ I ) = ( dom E \ { i e. dom E | N e/ ( E ` i ) } ) |
| 22 | nnel | |- ( -. N e/ ( E ` i ) <-> N e. ( E ` i ) ) |
|
| 23 | 22 | bicomi | |- ( N e. ( E ` i ) <-> -. N e/ ( E ` i ) ) |
| 24 | 23 | rabbii | |- { i e. dom E | N e. ( E ` i ) } = { i e. dom E | -. N e/ ( E ` i ) } |
| 25 | 7 24 | eqtri | |- J = { i e. dom E | -. N e/ ( E ` i ) } |
| 26 | 20 21 25 | 3eqtr4i | |- ( dom E \ I ) = J |
| 27 | 26 | a1i | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( dom E \ I ) = J ) |
| 28 | 27 | fveq2d | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( # ` ( dom E \ I ) ) = ( # ` J ) ) |
| 29 | 19 28 | oveq12d | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( ( # ` ( E |` I ) ) + ( # ` ( dom E \ I ) ) ) = ( ( # ` P ) + ( # ` J ) ) ) |
| 30 | 16 29 | eqtrd | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( # ` E ) = ( ( # ` P ) + ( # ` J ) ) ) |