This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 12-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdg2sstep.v | |- V = ( Vtx ` G ) |
|
| finsumvtxdg2sstep.e | |- E = ( iEdg ` G ) |
||
| finsumvtxdg2sstep.k | |- K = ( V \ { N } ) |
||
| finsumvtxdg2sstep.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
||
| finsumvtxdg2sstep.p | |- P = ( E |` I ) |
||
| finsumvtxdg2sstep.s | |- S = <. K , P >. |
||
| finsumvtxdg2ssteplem.j | |- J = { i e. dom E | N e. ( E ` i ) } |
||
| Assertion | finsumvtxdg2ssteplem2 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` J ) + ( # ` { i e. dom E | ( E ` i ) = { N } } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdg2sstep.v | |- V = ( Vtx ` G ) |
|
| 2 | finsumvtxdg2sstep.e | |- E = ( iEdg ` G ) |
|
| 3 | finsumvtxdg2sstep.k | |- K = ( V \ { N } ) |
|
| 4 | finsumvtxdg2sstep.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
|
| 5 | finsumvtxdg2sstep.p | |- P = ( E |` I ) |
|
| 6 | finsumvtxdg2sstep.s | |- S = <. K , P >. |
|
| 7 | finsumvtxdg2ssteplem.j | |- J = { i e. dom E | N e. ( E ` i ) } |
|
| 8 | dmfi | |- ( E e. Fin -> dom E e. Fin ) |
|
| 9 | 8 | adantl | |- ( ( V e. Fin /\ E e. Fin ) -> dom E e. Fin ) |
| 10 | simpr | |- ( ( G e. UPGraph /\ N e. V ) -> N e. V ) |
|
| 11 | eqid | |- dom E = dom E |
|
| 12 | 1 2 11 | vtxdgfival | |- ( ( dom E e. Fin /\ N e. V ) -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` { i e. dom E | N e. ( E ` i ) } ) + ( # ` { i e. dom E | ( E ` i ) = { N } } ) ) ) |
| 13 | 9 10 12 | syl2anr | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` { i e. dom E | N e. ( E ` i ) } ) + ( # ` { i e. dom E | ( E ` i ) = { N } } ) ) ) |
| 14 | 7 | eqcomi | |- { i e. dom E | N e. ( E ` i ) } = J |
| 15 | 14 | fveq2i | |- ( # ` { i e. dom E | N e. ( E ` i ) } ) = ( # ` J ) |
| 16 | 15 | a1i | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( # ` { i e. dom E | N e. ( E ` i ) } ) = ( # ` J ) ) |
| 17 | 16 | oveq1d | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( ( # ` { i e. dom E | N e. ( E ` i ) } ) + ( # ` { i e. dom E | ( E ` i ) = { N } } ) ) = ( ( # ` J ) + ( # ` { i e. dom E | ( E ` i ) = { N } } ) ) ) |
| 18 | 13 17 | eqtrd | |- ( ( ( G e. UPGraph /\ N e. V ) /\ ( V e. Fin /\ E e. Fin ) ) -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` J ) + ( # ` { i e. dom E | ( E ` i ) = { N } } ) ) ) |