This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . U is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| Assertion | fin23lem15 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝐵 ) ) | |
| 3 | 2 | sseq1d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ 𝐵 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑏 = 𝑎 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝑎 ) ) | |
| 5 | 4 | sseq1d | ⊢ ( 𝑏 = 𝑎 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
| 6 | fveq2 | ⊢ ( 𝑏 = suc 𝑎 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ suc 𝑎 ) ) | |
| 7 | 6 | sseq1d | ⊢ ( 𝑏 = suc 𝑎 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑏 = 𝐴 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝐴 ) ) | |
| 9 | 8 | sseq1d | ⊢ ( 𝑏 = 𝐴 → ( ( 𝑈 ‘ 𝑏 ) ⊆ ( 𝑈 ‘ 𝐵 ) ↔ ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
| 10 | ssidd | ⊢ ( 𝐵 ∈ ω → ( 𝑈 ‘ 𝐵 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) | |
| 11 | 1 | fin23lem13 | ⊢ ( 𝑎 ∈ ω → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝑎 ) ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝑎 ) ) |
| 13 | sstr2 | ⊢ ( ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) → ( 𝑈 ‘ suc 𝑎 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) ) |
| 15 | 3 5 7 9 10 14 | findsg | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝐴 ) ⊆ ( 𝑈 ‘ 𝐵 ) ) |