This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppc.o | |- O = ( oppCat ` C ) |
|
| fulloppc.p | |- P = ( oppCat ` D ) |
||
| ffthoppc.f | |- ( ph -> F ( ( C Full D ) i^i ( C Faith D ) ) G ) |
||
| Assertion | ffthoppc | |- ( ph -> F ( ( O Full P ) i^i ( O Faith P ) ) tpos G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | |- O = ( oppCat ` C ) |
|
| 2 | fulloppc.p | |- P = ( oppCat ` D ) |
|
| 3 | ffthoppc.f | |- ( ph -> F ( ( C Full D ) i^i ( C Faith D ) ) G ) |
|
| 4 | brin | |- ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
|
| 5 | 3 4 | sylib | |- ( ph -> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
| 6 | 5 | simpld | |- ( ph -> F ( C Full D ) G ) |
| 7 | 1 2 6 | fulloppc | |- ( ph -> F ( O Full P ) tpos G ) |
| 8 | 5 | simprd | |- ( ph -> F ( C Faith D ) G ) |
| 9 | 1 2 8 | fthoppc | |- ( ph -> F ( O Faith P ) tpos G ) |
| 10 | brin | |- ( F ( ( O Full P ) i^i ( O Faith P ) ) tpos G <-> ( F ( O Full P ) tpos G /\ F ( O Faith P ) tpos G ) ) |
|
| 11 | 7 9 10 | sylanbrc | |- ( ph -> F ( ( O Full P ) i^i ( O Faith P ) ) tpos G ) |