This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppc.o | ||
| fulloppc.p | |||
| ffthoppc.f | |||
| Assertion | ffthoppc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | ||
| 2 | fulloppc.p | ||
| 3 | ffthoppc.f | ||
| 4 | brin | ||
| 5 | 3 4 | sylib | |
| 6 | 5 | simpld | |
| 7 | 1 2 6 | fulloppc | |
| 8 | 5 | simprd | |
| 9 | 1 2 8 | fthoppc | |
| 10 | brin | ||
| 11 | 7 9 10 | sylanbrc |