This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fulloppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| ffthoppc.f | ⊢ ( 𝜑 → 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ) | ||
| Assertion | ffthoppc | ⊢ ( 𝜑 → 𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fulloppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | ffthoppc.f | ⊢ ( 𝜑 → 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ) | |
| 4 | brin | ⊢ ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ∧ 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ) |
| 6 | 5 | simpld | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
| 7 | 1 2 6 | fulloppc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ) |
| 8 | 5 | simprd | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 9 | 1 2 8 | fthoppc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 ) |
| 10 | brin | ⊢ ( 𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 ↔ ( 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ∧ 𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 ) ) | |
| 11 | 7 9 10 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) tpos 𝐺 ) |