This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cluster point is in the base set. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fclselbas.1 | |- X = U. J |
|
| Assertion | fclselbas | |- ( A e. ( J fClus F ) -> A e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclselbas.1 | |- X = U. J |
|
| 2 | 1 | fclsfil | |- ( A e. ( J fClus F ) -> F e. ( Fil ` X ) ) |
| 3 | fclstopon | |- ( A e. ( J fClus F ) -> ( J e. ( TopOn ` X ) <-> F e. ( Fil ` X ) ) ) |
|
| 4 | 2 3 | mpbird | |- ( A e. ( J fClus F ) -> J e. ( TopOn ` X ) ) |
| 5 | fclsopn | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) ) -> ( A e. ( J fClus F ) <-> ( A e. X /\ A. o e. J ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) ) ) ) |
|
| 6 | 4 2 5 | syl2anc | |- ( A e. ( J fClus F ) -> ( A e. ( J fClus F ) <-> ( A e. X /\ A. o e. J ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) ) ) ) |
| 7 | 6 | ibi | |- ( A e. ( J fClus F ) -> ( A e. X /\ A. o e. J ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) ) ) |
| 8 | 7 | simpld | |- ( A e. ( J fClus F ) -> A e. X ) |