This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsopni | |- ( ( A e. ( J fClus F ) /\ ( U e. J /\ A e. U /\ S e. F ) ) -> ( U i^i S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | fclsfil | |- ( A e. ( J fClus F ) -> F e. ( Fil ` U. J ) ) |
| 3 | fclstopon | |- ( A e. ( J fClus F ) -> ( J e. ( TopOn ` U. J ) <-> F e. ( Fil ` U. J ) ) ) |
|
| 4 | 2 3 | mpbird | |- ( A e. ( J fClus F ) -> J e. ( TopOn ` U. J ) ) |
| 5 | fclsopn | |- ( ( J e. ( TopOn ` U. J ) /\ F e. ( Fil ` U. J ) ) -> ( A e. ( J fClus F ) <-> ( A e. U. J /\ A. o e. J ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) ) ) ) |
|
| 6 | 4 2 5 | syl2anc | |- ( A e. ( J fClus F ) -> ( A e. ( J fClus F ) <-> ( A e. U. J /\ A. o e. J ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) ) ) ) |
| 7 | 6 | ibi | |- ( A e. ( J fClus F ) -> ( A e. U. J /\ A. o e. J ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) ) ) |
| 8 | eleq2 | |- ( o = U -> ( A e. o <-> A e. U ) ) |
|
| 9 | ineq1 | |- ( o = U -> ( o i^i s ) = ( U i^i s ) ) |
|
| 10 | 9 | neeq1d | |- ( o = U -> ( ( o i^i s ) =/= (/) <-> ( U i^i s ) =/= (/) ) ) |
| 11 | 10 | ralbidv | |- ( o = U -> ( A. s e. F ( o i^i s ) =/= (/) <-> A. s e. F ( U i^i s ) =/= (/) ) ) |
| 12 | 8 11 | imbi12d | |- ( o = U -> ( ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) <-> ( A e. U -> A. s e. F ( U i^i s ) =/= (/) ) ) ) |
| 13 | 12 | rspccv | |- ( A. o e. J ( A e. o -> A. s e. F ( o i^i s ) =/= (/) ) -> ( U e. J -> ( A e. U -> A. s e. F ( U i^i s ) =/= (/) ) ) ) |
| 14 | 7 13 | simpl2im | |- ( A e. ( J fClus F ) -> ( U e. J -> ( A e. U -> A. s e. F ( U i^i s ) =/= (/) ) ) ) |
| 15 | ineq2 | |- ( s = S -> ( U i^i s ) = ( U i^i S ) ) |
|
| 16 | 15 | neeq1d | |- ( s = S -> ( ( U i^i s ) =/= (/) <-> ( U i^i S ) =/= (/) ) ) |
| 17 | 16 | rspccv | |- ( A. s e. F ( U i^i s ) =/= (/) -> ( S e. F -> ( U i^i S ) =/= (/) ) ) |
| 18 | 14 17 | syl8 | |- ( A e. ( J fClus F ) -> ( U e. J -> ( A e. U -> ( S e. F -> ( U i^i S ) =/= (/) ) ) ) ) |
| 19 | 18 | 3imp2 | |- ( ( A e. ( J fClus F ) /\ ( U e. J /\ A e. U /\ S e. F ) ) -> ( U i^i S ) =/= (/) ) |