This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Jeff Hankins, 1-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbasssin | |- ( ( F e. ( fBas ` X ) /\ A e. F /\ B e. F ) -> E. x e. F x C_ ( A i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | |- ( F e. ( fBas ` X ) -> X e. dom fBas ) |
|
| 2 | isfbas2 | |- ( X e. dom fBas -> ( F e. ( fBas ` X ) <-> ( F C_ ~P X /\ ( F =/= (/) /\ (/) e/ F /\ A. y e. F A. z e. F E. x e. F x C_ ( y i^i z ) ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( fBas ` X ) -> ( F e. ( fBas ` X ) <-> ( F C_ ~P X /\ ( F =/= (/) /\ (/) e/ F /\ A. y e. F A. z e. F E. x e. F x C_ ( y i^i z ) ) ) ) ) |
| 4 | 3 | ibi | |- ( F e. ( fBas ` X ) -> ( F C_ ~P X /\ ( F =/= (/) /\ (/) e/ F /\ A. y e. F A. z e. F E. x e. F x C_ ( y i^i z ) ) ) ) |
| 5 | 4 | simprd | |- ( F e. ( fBas ` X ) -> ( F =/= (/) /\ (/) e/ F /\ A. y e. F A. z e. F E. x e. F x C_ ( y i^i z ) ) ) |
| 6 | 5 | simp3d | |- ( F e. ( fBas ` X ) -> A. y e. F A. z e. F E. x e. F x C_ ( y i^i z ) ) |
| 7 | ineq1 | |- ( y = A -> ( y i^i z ) = ( A i^i z ) ) |
|
| 8 | 7 | sseq2d | |- ( y = A -> ( x C_ ( y i^i z ) <-> x C_ ( A i^i z ) ) ) |
| 9 | 8 | rexbidv | |- ( y = A -> ( E. x e. F x C_ ( y i^i z ) <-> E. x e. F x C_ ( A i^i z ) ) ) |
| 10 | ineq2 | |- ( z = B -> ( A i^i z ) = ( A i^i B ) ) |
|
| 11 | 10 | sseq2d | |- ( z = B -> ( x C_ ( A i^i z ) <-> x C_ ( A i^i B ) ) ) |
| 12 | 11 | rexbidv | |- ( z = B -> ( E. x e. F x C_ ( A i^i z ) <-> E. x e. F x C_ ( A i^i B ) ) ) |
| 13 | 9 12 | rspc2v | |- ( ( A e. F /\ B e. F ) -> ( A. y e. F A. z e. F E. x e. F x C_ ( y i^i z ) -> E. x e. F x C_ ( A i^i B ) ) ) |
| 14 | 6 13 | syl5com | |- ( F e. ( fBas ` X ) -> ( ( A e. F /\ B e. F ) -> E. x e. F x C_ ( A i^i B ) ) ) |
| 15 | 14 | 3impib | |- ( ( F e. ( fBas ` X ) /\ A e. F /\ B e. F ) -> E. x e. F x C_ ( A i^i B ) ) |