This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The 2nd (second component of an ordered pair) function restricted to a one-to-one function F is a one-to-one function from F onto the range of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1o2ndf1 | |- ( F : A -1-1-> B -> ( 2nd |` F ) : F -1-1-onto-> ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | fo2ndf | |- ( F : A --> B -> ( 2nd |` F ) : F -onto-> ran F ) |
|
| 3 | 1 2 | syl | |- ( F : A -1-1-> B -> ( 2nd |` F ) : F -onto-> ran F ) |
| 4 | f2ndf | |- ( F : A --> B -> ( 2nd |` F ) : F --> B ) |
|
| 5 | 1 4 | syl | |- ( F : A -1-1-> B -> ( 2nd |` F ) : F --> B ) |
| 6 | fssxp | |- ( F : A --> B -> F C_ ( A X. B ) ) |
|
| 7 | 1 6 | syl | |- ( F : A -1-1-> B -> F C_ ( A X. B ) ) |
| 8 | ssel2 | |- ( ( F C_ ( A X. B ) /\ x e. F ) -> x e. ( A X. B ) ) |
|
| 9 | elxp2 | |- ( x e. ( A X. B ) <-> E. a e. A E. v e. B x = <. a , v >. ) |
|
| 10 | 8 9 | sylib | |- ( ( F C_ ( A X. B ) /\ x e. F ) -> E. a e. A E. v e. B x = <. a , v >. ) |
| 11 | ssel2 | |- ( ( F C_ ( A X. B ) /\ y e. F ) -> y e. ( A X. B ) ) |
|
| 12 | elxp2 | |- ( y e. ( A X. B ) <-> E. b e. A E. w e. B y = <. b , w >. ) |
|
| 13 | 11 12 | sylib | |- ( ( F C_ ( A X. B ) /\ y e. F ) -> E. b e. A E. w e. B y = <. b , w >. ) |
| 14 | 10 13 | anim12dan | |- ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( E. a e. A E. v e. B x = <. a , v >. /\ E. b e. A E. w e. B y = <. b , w >. ) ) |
| 15 | fvres | |- ( <. a , v >. e. F -> ( ( 2nd |` F ) ` <. a , v >. ) = ( 2nd ` <. a , v >. ) ) |
|
| 16 | 15 | ad2antrr | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( 2nd |` F ) ` <. a , v >. ) = ( 2nd ` <. a , v >. ) ) |
| 17 | fvres | |- ( <. b , w >. e. F -> ( ( 2nd |` F ) ` <. b , w >. ) = ( 2nd ` <. b , w >. ) ) |
|
| 18 | 17 | ad2antlr | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( 2nd |` F ) ` <. b , w >. ) = ( 2nd ` <. b , w >. ) ) |
| 19 | 16 18 | eqeq12d | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) <-> ( 2nd ` <. a , v >. ) = ( 2nd ` <. b , w >. ) ) ) |
| 20 | vex | |- a e. _V |
|
| 21 | vex | |- v e. _V |
|
| 22 | 20 21 | op2nd | |- ( 2nd ` <. a , v >. ) = v |
| 23 | vex | |- b e. _V |
|
| 24 | vex | |- w e. _V |
|
| 25 | 23 24 | op2nd | |- ( 2nd ` <. b , w >. ) = w |
| 26 | 22 25 | eqeq12i | |- ( ( 2nd ` <. a , v >. ) = ( 2nd ` <. b , w >. ) <-> v = w ) |
| 27 | f1fun | |- ( F : A -1-1-> B -> Fun F ) |
|
| 28 | funopfv | |- ( Fun F -> ( <. a , v >. e. F -> ( F ` a ) = v ) ) |
|
| 29 | funopfv | |- ( Fun F -> ( <. b , w >. e. F -> ( F ` b ) = w ) ) |
|
| 30 | 28 29 | anim12d | |- ( Fun F -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( F ` a ) = v /\ ( F ` b ) = w ) ) ) |
| 31 | 27 30 | syl | |- ( F : A -1-1-> B -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( F ` a ) = v /\ ( F ` b ) = w ) ) ) |
| 32 | eqcom | |- ( ( F ` a ) = v <-> v = ( F ` a ) ) |
|
| 33 | 32 | biimpi | |- ( ( F ` a ) = v -> v = ( F ` a ) ) |
| 34 | eqcom | |- ( ( F ` b ) = w <-> w = ( F ` b ) ) |
|
| 35 | 34 | biimpi | |- ( ( F ` b ) = w -> w = ( F ` b ) ) |
| 36 | 33 35 | eqeqan12d | |- ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( v = w <-> ( F ` a ) = ( F ` b ) ) ) |
| 37 | simpl | |- ( ( a e. A /\ v e. B ) -> a e. A ) |
|
| 38 | simpl | |- ( ( b e. A /\ w e. B ) -> b e. A ) |
|
| 39 | 37 38 | anim12i | |- ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( a e. A /\ b e. A ) ) |
| 40 | f1veqaeq | |- ( ( F : A -1-1-> B /\ ( a e. A /\ b e. A ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
|
| 41 | 39 40 | sylan2 | |- ( ( F : A -1-1-> B /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
| 42 | opeq12 | |- ( ( a = b /\ v = w ) -> <. a , v >. = <. b , w >. ) |
|
| 43 | 42 | ex | |- ( a = b -> ( v = w -> <. a , v >. = <. b , w >. ) ) |
| 44 | 41 43 | syl6 | |- ( ( F : A -1-1-> B /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( F ` a ) = ( F ` b ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) |
| 45 | 44 | com23 | |- ( ( F : A -1-1-> B /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( v = w -> ( ( F ` a ) = ( F ` b ) -> <. a , v >. = <. b , w >. ) ) ) |
| 46 | 45 | ex | |- ( F : A -1-1-> B -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> ( ( F ` a ) = ( F ` b ) -> <. a , v >. = <. b , w >. ) ) ) ) |
| 47 | 46 | com14 | |- ( ( F ` a ) = ( F ` b ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) |
| 48 | 36 47 | biimtrdi | |- ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( v = w -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) ) |
| 49 | 48 | com14 | |- ( v = w -> ( v = w -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) ) |
| 50 | 49 | pm2.43i | |- ( v = w -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) |
| 51 | 50 | com14 | |- ( F : A -1-1-> B -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) |
| 52 | 51 | com23 | |- ( F : A -1-1-> B -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) |
| 53 | 31 52 | syld | |- ( F : A -1-1-> B -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) |
| 54 | 53 | com13 | |- ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( F : A -1-1-> B -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) |
| 55 | 54 | impcom | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( F : A -1-1-> B -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) |
| 56 | 55 | com23 | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( v = w -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) |
| 57 | 26 56 | biimtrid | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( 2nd ` <. a , v >. ) = ( 2nd ` <. b , w >. ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) |
| 58 | 19 57 | sylbid | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) |
| 59 | 58 | com23 | |- ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) |
| 60 | 59 | ex | |- ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) |
| 61 | 60 | adantl | |- ( ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) |
| 62 | 61 | com12 | |- ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) |
| 63 | 62 | ad4ant13 | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) |
| 64 | eleq1 | |- ( x = <. a , v >. -> ( x e. F <-> <. a , v >. e. F ) ) |
|
| 65 | 64 | ad2antlr | |- ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) -> ( x e. F <-> <. a , v >. e. F ) ) |
| 66 | eleq1 | |- ( y = <. b , w >. -> ( y e. F <-> <. b , w >. e. F ) ) |
|
| 67 | 65 66 | bi2anan9 | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( x e. F /\ y e. F ) <-> ( <. a , v >. e. F /\ <. b , w >. e. F ) ) ) |
| 68 | 67 | anbi2d | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) <-> ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) ) ) |
| 69 | fveq2 | |- ( x = <. a , v >. -> ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` <. a , v >. ) ) |
|
| 70 | 69 | ad2antlr | |- ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) -> ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` <. a , v >. ) ) |
| 71 | fveq2 | |- ( y = <. b , w >. -> ( ( 2nd |` F ) ` y ) = ( ( 2nd |` F ) ` <. b , w >. ) ) |
|
| 72 | 70 71 | eqeqan12d | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) <-> ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) ) ) |
| 73 | simpllr | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> x = <. a , v >. ) |
|
| 74 | simpr | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> y = <. b , w >. ) |
|
| 75 | 73 74 | eqeq12d | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( x = y <-> <. a , v >. = <. b , w >. ) ) |
| 76 | 72 75 | imbi12d | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) <-> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) |
| 77 | 76 | imbi2d | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) <-> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) |
| 78 | 63 68 77 | 3imtr4d | |- ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) |
| 79 | 78 | ex | |- ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) -> ( y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) |
| 80 | 79 | rexlimdvva | |- ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) -> ( E. b e. A E. w e. B y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) |
| 81 | 80 | ex | |- ( ( a e. A /\ v e. B ) -> ( x = <. a , v >. -> ( E. b e. A E. w e. B y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) ) |
| 82 | 81 | rexlimivv | |- ( E. a e. A E. v e. B x = <. a , v >. -> ( E. b e. A E. w e. B y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) |
| 83 | 82 | imp | |- ( ( E. a e. A E. v e. B x = <. a , v >. /\ E. b e. A E. w e. B y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) |
| 84 | 14 83 | mpcom | |- ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) |
| 85 | 84 | ex | |- ( F C_ ( A X. B ) -> ( ( x e. F /\ y e. F ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) |
| 86 | 85 | com23 | |- ( F C_ ( A X. B ) -> ( F : A -1-1-> B -> ( ( x e. F /\ y e. F ) -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) |
| 87 | 7 86 | mpcom | |- ( F : A -1-1-> B -> ( ( x e. F /\ y e. F ) -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) |
| 88 | 87 | ralrimivv | |- ( F : A -1-1-> B -> A. x e. F A. y e. F ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) |
| 89 | dff13 | |- ( ( 2nd |` F ) : F -1-1-> B <-> ( ( 2nd |` F ) : F --> B /\ A. x e. F A. y e. F ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) |
|
| 90 | 5 88 89 | sylanbrc | |- ( F : A -1-1-> B -> ( 2nd |` F ) : F -1-1-> B ) |
| 91 | df-f1 | |- ( ( 2nd |` F ) : F -1-1-> B <-> ( ( 2nd |` F ) : F --> B /\ Fun `' ( 2nd |` F ) ) ) |
|
| 92 | 91 | simprbi | |- ( ( 2nd |` F ) : F -1-1-> B -> Fun `' ( 2nd |` F ) ) |
| 93 | 90 92 | syl | |- ( F : A -1-1-> B -> Fun `' ( 2nd |` F ) ) |
| 94 | dff1o3 | |- ( ( 2nd |` F ) : F -1-1-onto-> ran F <-> ( ( 2nd |` F ) : F -onto-> ran F /\ Fun `' ( 2nd |` F ) ) ) |
|
| 95 | 3 93 94 | sylanbrc | |- ( F : A -1-1-> B -> ( 2nd |` F ) : F -1-1-onto-> ran F ) |