This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The 2nd (second component of an ordered pair) function restricted to a function F is a function from F into the codomain of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f2ndf | |- ( F : A --> B -> ( 2nd |` F ) : F --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f2ndres | |- ( 2nd |` ( A X. B ) ) : ( A X. B ) --> B |
|
| 2 | fssxp | |- ( F : A --> B -> F C_ ( A X. B ) ) |
|
| 3 | fssres | |- ( ( ( 2nd |` ( A X. B ) ) : ( A X. B ) --> B /\ F C_ ( A X. B ) ) -> ( ( 2nd |` ( A X. B ) ) |` F ) : F --> B ) |
|
| 4 | 1 2 3 | sylancr | |- ( F : A --> B -> ( ( 2nd |` ( A X. B ) ) |` F ) : F --> B ) |
| 5 | 2 | resabs1d | |- ( F : A --> B -> ( ( 2nd |` ( A X. B ) ) |` F ) = ( 2nd |` F ) ) |
| 6 | 5 | eqcomd | |- ( F : A --> B -> ( 2nd |` F ) = ( ( 2nd |` ( A X. B ) ) |` F ) ) |
| 7 | 6 | feq1d | |- ( F : A --> B -> ( ( 2nd |` F ) : F --> B <-> ( ( 2nd |` ( A X. B ) ) |` F ) : F --> B ) ) |
| 8 | 4 7 | mpbird | |- ( F : A --> B -> ( 2nd |` F ) : F --> B ) |