This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The 2nd (second component of an ordered pair) function restricted to a function F is a function from F onto the range of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fo2ndf | |- ( F : A --> B -> ( 2nd |` F ) : F -onto-> ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffrn | |- ( F : A --> B -> F : A --> ran F ) |
|
| 2 | f2ndf | |- ( F : A --> ran F -> ( 2nd |` F ) : F --> ran F ) |
|
| 3 | 1 2 | syl | |- ( F : A --> B -> ( 2nd |` F ) : F --> ran F ) |
| 4 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 5 | dffn3 | |- ( F Fn A <-> F : A --> ran F ) |
|
| 6 | 5 2 | sylbi | |- ( F Fn A -> ( 2nd |` F ) : F --> ran F ) |
| 7 | 4 6 | syl | |- ( F : A --> B -> ( 2nd |` F ) : F --> ran F ) |
| 8 | 7 | frnd | |- ( F : A --> B -> ran ( 2nd |` F ) C_ ran F ) |
| 9 | elrn2g | |- ( y e. ran F -> ( y e. ran F <-> E. x <. x , y >. e. F ) ) |
|
| 10 | 9 | ibi | |- ( y e. ran F -> E. x <. x , y >. e. F ) |
| 11 | fvres | |- ( <. x , y >. e. F -> ( ( 2nd |` F ) ` <. x , y >. ) = ( 2nd ` <. x , y >. ) ) |
|
| 12 | 11 | adantl | |- ( ( F : A --> B /\ <. x , y >. e. F ) -> ( ( 2nd |` F ) ` <. x , y >. ) = ( 2nd ` <. x , y >. ) ) |
| 13 | vex | |- x e. _V |
|
| 14 | vex | |- y e. _V |
|
| 15 | 13 14 | op2nd | |- ( 2nd ` <. x , y >. ) = y |
| 16 | 12 15 | eqtr2di | |- ( ( F : A --> B /\ <. x , y >. e. F ) -> y = ( ( 2nd |` F ) ` <. x , y >. ) ) |
| 17 | f2ndf | |- ( F : A --> B -> ( 2nd |` F ) : F --> B ) |
|
| 18 | 17 | ffnd | |- ( F : A --> B -> ( 2nd |` F ) Fn F ) |
| 19 | fnfvelrn | |- ( ( ( 2nd |` F ) Fn F /\ <. x , y >. e. F ) -> ( ( 2nd |` F ) ` <. x , y >. ) e. ran ( 2nd |` F ) ) |
|
| 20 | 18 19 | sylan | |- ( ( F : A --> B /\ <. x , y >. e. F ) -> ( ( 2nd |` F ) ` <. x , y >. ) e. ran ( 2nd |` F ) ) |
| 21 | 16 20 | eqeltrd | |- ( ( F : A --> B /\ <. x , y >. e. F ) -> y e. ran ( 2nd |` F ) ) |
| 22 | 21 | ex | |- ( F : A --> B -> ( <. x , y >. e. F -> y e. ran ( 2nd |` F ) ) ) |
| 23 | 22 | exlimdv | |- ( F : A --> B -> ( E. x <. x , y >. e. F -> y e. ran ( 2nd |` F ) ) ) |
| 24 | 10 23 | syl5 | |- ( F : A --> B -> ( y e. ran F -> y e. ran ( 2nd |` F ) ) ) |
| 25 | 24 | ssrdv | |- ( F : A --> B -> ran F C_ ran ( 2nd |` F ) ) |
| 26 | 8 25 | eqssd | |- ( F : A --> B -> ran ( 2nd |` F ) = ran F ) |
| 27 | dffo2 | |- ( ( 2nd |` F ) : F -onto-> ran F <-> ( ( 2nd |` F ) : F --> ran F /\ ran ( 2nd |` F ) = ran F ) ) |
|
| 28 | 3 26 27 | sylanbrc | |- ( F : A --> B -> ( 2nd |` F ) : F -onto-> ran F ) |