This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The 2nd (second component of an ordered pair) function restricted to a one-to-one function F is a one-to-one function from F onto the range of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1o2ndf1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 –1-1-onto→ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fo2ndf | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 –onto→ ran 𝐹 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 –onto→ ran 𝐹 ) |
| 4 | f2ndf | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) | |
| 5 | 1 4 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |
| 6 | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) | |
| 7 | 1 6 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
| 8 | ssel2 | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ ( 𝐴 × 𝐵 ) ) | |
| 9 | elxp2 | ⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑣 ∈ 𝐵 𝑥 = 〈 𝑎 , 𝑣 〉 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑣 ∈ 𝐵 𝑥 = 〈 𝑎 , 𝑣 〉 ) |
| 11 | ssel2 | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ∈ ( 𝐴 × 𝐵 ) ) | |
| 12 | elxp2 | ⊢ ( 𝑦 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑏 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = 〈 𝑏 , 𝑤 〉 ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ∃ 𝑏 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = 〈 𝑏 , 𝑤 〉 ) |
| 14 | 10 13 | anim12dan | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑣 ∈ 𝐵 𝑥 = 〈 𝑎 , 𝑣 〉 ∧ ∃ 𝑏 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = 〈 𝑏 , 𝑤 〉 ) ) |
| 15 | fvres | ⊢ ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 → ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( 2nd ‘ 〈 𝑎 , 𝑣 〉 ) ) | |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( 2nd ‘ 〈 𝑎 , 𝑣 〉 ) ) |
| 17 | fvres | ⊢ ( 〈 𝑏 , 𝑤 〉 ∈ 𝐹 → ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) = ( 2nd ‘ 〈 𝑏 , 𝑤 〉 ) ) | |
| 18 | 17 | ad2antlr | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) = ( 2nd ‘ 〈 𝑏 , 𝑤 〉 ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) ↔ ( 2nd ‘ 〈 𝑎 , 𝑣 〉 ) = ( 2nd ‘ 〈 𝑏 , 𝑤 〉 ) ) ) |
| 20 | vex | ⊢ 𝑎 ∈ V | |
| 21 | vex | ⊢ 𝑣 ∈ V | |
| 22 | 20 21 | op2nd | ⊢ ( 2nd ‘ 〈 𝑎 , 𝑣 〉 ) = 𝑣 |
| 23 | vex | ⊢ 𝑏 ∈ V | |
| 24 | vex | ⊢ 𝑤 ∈ V | |
| 25 | 23 24 | op2nd | ⊢ ( 2nd ‘ 〈 𝑏 , 𝑤 〉 ) = 𝑤 |
| 26 | 22 25 | eqeq12i | ⊢ ( ( 2nd ‘ 〈 𝑎 , 𝑣 〉 ) = ( 2nd ‘ 〈 𝑏 , 𝑤 〉 ) ↔ 𝑣 = 𝑤 ) |
| 27 | f1fun | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun 𝐹 ) | |
| 28 | funopfv | ⊢ ( Fun 𝐹 → ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) | |
| 29 | funopfv | ⊢ ( Fun 𝐹 → ( 〈 𝑏 , 𝑤 〉 ∈ 𝐹 → ( 𝐹 ‘ 𝑏 ) = 𝑤 ) ) | |
| 30 | 28 29 | anim12d | ⊢ ( Fun 𝐹 → ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) ) ) |
| 31 | 27 30 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) ) ) |
| 32 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ↔ 𝑣 = ( 𝐹 ‘ 𝑎 ) ) | |
| 33 | 32 | biimpi | ⊢ ( ( 𝐹 ‘ 𝑎 ) = 𝑣 → 𝑣 = ( 𝐹 ‘ 𝑎 ) ) |
| 34 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑏 ) = 𝑤 ↔ 𝑤 = ( 𝐹 ‘ 𝑏 ) ) | |
| 35 | 34 | biimpi | ⊢ ( ( 𝐹 ‘ 𝑏 ) = 𝑤 → 𝑤 = ( 𝐹 ‘ 𝑏 ) ) |
| 36 | 33 35 | eqeqan12d | ⊢ ( ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) → ( 𝑣 = 𝑤 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 37 | simpl | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) → 𝑎 ∈ 𝐴 ) | |
| 38 | simpl | ⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → 𝑏 ∈ 𝐴 ) | |
| 39 | 37 38 | anim12i | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) |
| 40 | f1veqaeq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) | |
| 41 | 39 40 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 42 | opeq12 | ⊢ ( ( 𝑎 = 𝑏 ∧ 𝑣 = 𝑤 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) | |
| 43 | 42 | ex | ⊢ ( 𝑎 = 𝑏 → ( 𝑣 = 𝑤 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) |
| 44 | 41 43 | syl6 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → ( 𝑣 = 𝑤 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 45 | 44 | com23 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( 𝑣 = 𝑤 → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 46 | 45 | ex | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑣 = 𝑤 → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 47 | 46 | com14 | ⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑣 = 𝑤 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 48 | 36 47 | biimtrdi | ⊢ ( ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) → ( 𝑣 = 𝑤 → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑣 = 𝑤 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) ) |
| 49 | 48 | com14 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 = 𝑤 → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) ) |
| 50 | 49 | pm2.43i | ⊢ ( 𝑣 = 𝑤 → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 51 | 50 | com14 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) → ( 𝑣 = 𝑤 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 52 | 51 | com23 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑤 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑣 = 𝑤 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 53 | 31 52 | syld | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑣 = 𝑤 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 54 | 53 | com13 | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝑣 = 𝑤 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 55 | 54 | impcom | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝑣 = 𝑤 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 56 | 55 | com23 | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( 𝑣 = 𝑤 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 57 | 26 56 | biimtrid | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( ( 2nd ‘ 〈 𝑎 , 𝑣 〉 ) = ( 2nd ‘ 〈 𝑏 , 𝑤 〉 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 58 | 19 57 | sylbid | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 59 | 58 | com23 | ⊢ ( ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 60 | 59 | ex | ⊢ ( ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 61 | 60 | adantl | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 62 | 61 | com12 | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 63 | 62 | ad4ant13 | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 64 | eleq1 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑣 〉 → ( 𝑥 ∈ 𝐹 ↔ 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ) ) | |
| 65 | 64 | ad2antlr | ⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐹 ↔ 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ) ) |
| 66 | eleq1 | ⊢ ( 𝑦 = 〈 𝑏 , 𝑤 〉 → ( 𝑦 ∈ 𝐹 ↔ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ) | |
| 67 | 65 66 | bi2anan9 | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ↔ ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ) ) |
| 68 | 67 | anbi2d | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 〈 𝑎 , 𝑣 〉 ∈ 𝐹 ∧ 〈 𝑏 , 𝑤 〉 ∈ 𝐹 ) ) ) ) |
| 69 | fveq2 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑣 〉 → ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) ) | |
| 70 | 69 | ad2antlr | ⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) ) |
| 71 | fveq2 | ⊢ ( 𝑦 = 〈 𝑏 , 𝑤 〉 → ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) ) | |
| 72 | 70 71 | eqeqan12d | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) ↔ ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) ) ) |
| 73 | simpllr | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → 𝑥 = 〈 𝑎 , 𝑣 〉 ) | |
| 74 | simpr | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → 𝑦 = 〈 𝑏 , 𝑤 〉 ) | |
| 75 | 73 74 | eqeq12d | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( 𝑥 = 𝑦 ↔ 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) |
| 76 | 72 75 | imbi12d | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) |
| 77 | 76 | imbi2d | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑎 , 𝑣 〉 ) = ( ( 2nd ↾ 𝐹 ) ‘ 〈 𝑏 , 𝑤 〉 ) → 〈 𝑎 , 𝑣 〉 = 〈 𝑏 , 𝑤 〉 ) ) ) ) |
| 78 | 63 68 77 | 3imtr4d | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 79 | 78 | ex | ⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑦 = 〈 𝑏 , 𝑤 〉 → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 80 | 79 | rexlimdvva | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑥 = 〈 𝑎 , 𝑣 〉 ) → ( ∃ 𝑏 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = 〈 𝑏 , 𝑤 〉 → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 81 | 80 | ex | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑥 = 〈 𝑎 , 𝑣 〉 → ( ∃ 𝑏 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = 〈 𝑏 , 𝑤 〉 → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) ) |
| 82 | 81 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑣 ∈ 𝐵 𝑥 = 〈 𝑎 , 𝑣 〉 → ( ∃ 𝑏 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = 〈 𝑏 , 𝑤 〉 → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 83 | 82 | imp | ⊢ ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑣 ∈ 𝐵 𝑥 = 〈 𝑎 , 𝑣 〉 ∧ ∃ 𝑏 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑦 = 〈 𝑏 , 𝑤 〉 ) → ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 84 | 14 83 | mpcom | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 85 | 84 | ex | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 86 | 85 | com23 | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 87 | 7 86 | mpcom | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 88 | 87 | ralrimivv | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 89 | dff13 | ⊢ ( ( 2nd ↾ 𝐹 ) : 𝐹 –1-1→ 𝐵 ↔ ( ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( ( ( 2nd ↾ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ↾ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 90 | 5 88 89 | sylanbrc | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 –1-1→ 𝐵 ) |
| 91 | df-f1 | ⊢ ( ( 2nd ↾ 𝐹 ) : 𝐹 –1-1→ 𝐵 ↔ ( ( 2nd ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ∧ Fun ◡ ( 2nd ↾ 𝐹 ) ) ) | |
| 92 | 91 | simprbi | ⊢ ( ( 2nd ↾ 𝐹 ) : 𝐹 –1-1→ 𝐵 → Fun ◡ ( 2nd ↾ 𝐹 ) ) |
| 93 | 90 92 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun ◡ ( 2nd ↾ 𝐹 ) ) |
| 94 | dff1o3 | ⊢ ( ( 2nd ↾ 𝐹 ) : 𝐹 –1-1-onto→ ran 𝐹 ↔ ( ( 2nd ↾ 𝐹 ) : 𝐹 –onto→ ran 𝐹 ∧ Fun ◡ ( 2nd ↾ 𝐹 ) ) ) | |
| 95 | 3 93 94 | sylanbrc | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 2nd ↾ 𝐹 ) : 𝐹 –1-1-onto→ ran 𝐹 ) |