This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dff14a | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( x =/= y -> ( F ` x ) =/= ( F ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 2 | con34b | |- ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( -. x = y -> -. ( F ` x ) = ( F ` y ) ) ) |
|
| 3 | df-ne | |- ( x =/= y <-> -. x = y ) |
|
| 4 | 3 | bicomi | |- ( -. x = y <-> x =/= y ) |
| 5 | df-ne | |- ( ( F ` x ) =/= ( F ` y ) <-> -. ( F ` x ) = ( F ` y ) ) |
|
| 6 | 5 | bicomi | |- ( -. ( F ` x ) = ( F ` y ) <-> ( F ` x ) =/= ( F ` y ) ) |
| 7 | 4 6 | imbi12i | |- ( ( -. x = y -> -. ( F ` x ) = ( F ` y ) ) <-> ( x =/= y -> ( F ` x ) =/= ( F ` y ) ) ) |
| 8 | 2 7 | bitri | |- ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( x =/= y -> ( F ` x ) =/= ( F ` y ) ) ) |
| 9 | 8 | 2ralbii | |- ( A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) <-> A. x e. A A. y e. A ( x =/= y -> ( F ` x ) =/= ( F ` y ) ) ) |
| 10 | 9 | anbi2i | |- ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( x =/= y -> ( F ` x ) =/= ( F ` y ) ) ) ) |
| 11 | 1 10 | bitri | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( x =/= y -> ( F ` x ) =/= ( F ` y ) ) ) ) |