This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values for a 1-1 function from a set with three different elements are different. (Contributed by AV, 20-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1dom3fv3dif.v | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| f1dom3fv3dif.n | |- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
||
| f1dom3fv3dif.f | |- ( ph -> F : { A , B , C } -1-1-> R ) |
||
| Assertion | f1dom3fv3dif | |- ( ph -> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1dom3fv3dif.v | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| 2 | f1dom3fv3dif.n | |- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
|
| 3 | f1dom3fv3dif.f | |- ( ph -> F : { A , B , C } -1-1-> R ) |
|
| 4 | 2 | simp1d | |- ( ph -> A =/= B ) |
| 5 | eqidd | |- ( ph -> A = A ) |
|
| 6 | 5 | 3mix1d | |- ( ph -> ( A = A \/ A = B \/ A = C ) ) |
| 7 | 1 | simp1d | |- ( ph -> A e. X ) |
| 8 | eltpg | |- ( A e. X -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
| 10 | 6 9 | mpbird | |- ( ph -> A e. { A , B , C } ) |
| 11 | eqidd | |- ( ph -> B = B ) |
|
| 12 | 11 | 3mix2d | |- ( ph -> ( B = A \/ B = B \/ B = C ) ) |
| 13 | 1 | simp2d | |- ( ph -> B e. Y ) |
| 14 | eltpg | |- ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
| 16 | 12 15 | mpbird | |- ( ph -> B e. { A , B , C } ) |
| 17 | f1fveq | |- ( ( F : { A , B , C } -1-1-> R /\ ( A e. { A , B , C } /\ B e. { A , B , C } ) ) -> ( ( F ` A ) = ( F ` B ) <-> A = B ) ) |
|
| 18 | 3 10 16 17 | syl12anc | |- ( ph -> ( ( F ` A ) = ( F ` B ) <-> A = B ) ) |
| 19 | 18 | necon3bid | |- ( ph -> ( ( F ` A ) =/= ( F ` B ) <-> A =/= B ) ) |
| 20 | 4 19 | mpbird | |- ( ph -> ( F ` A ) =/= ( F ` B ) ) |
| 21 | 2 | simp2d | |- ( ph -> A =/= C ) |
| 22 | 1 | simp3d | |- ( ph -> C e. Z ) |
| 23 | tpid3g | |- ( C e. Z -> C e. { A , B , C } ) |
|
| 24 | 22 23 | syl | |- ( ph -> C e. { A , B , C } ) |
| 25 | f1fveq | |- ( ( F : { A , B , C } -1-1-> R /\ ( A e. { A , B , C } /\ C e. { A , B , C } ) ) -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) |
|
| 26 | 3 10 24 25 | syl12anc | |- ( ph -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) |
| 27 | 26 | necon3bid | |- ( ph -> ( ( F ` A ) =/= ( F ` C ) <-> A =/= C ) ) |
| 28 | 21 27 | mpbird | |- ( ph -> ( F ` A ) =/= ( F ` C ) ) |
| 29 | 2 | simp3d | |- ( ph -> B =/= C ) |
| 30 | f1fveq | |- ( ( F : { A , B , C } -1-1-> R /\ ( B e. { A , B , C } /\ C e. { A , B , C } ) ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
|
| 31 | 3 16 24 30 | syl12anc | |- ( ph -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
| 32 | 31 | necon3bid | |- ( ph -> ( ( F ` B ) =/= ( F ` C ) <-> B =/= C ) ) |
| 33 | 29 32 | mpbird | |- ( ph -> ( F ` B ) =/= ( F ` C ) ) |
| 34 | 20 28 33 | 3jca | |- ( ph -> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) |