This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulexpz | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ N e. ZZ ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 2 | simpl | |- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
|
| 3 | simpl | |- ( ( B e. CC /\ B =/= 0 ) -> B e. CC ) |
|
| 4 | 2 3 | anim12i | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A e. CC /\ B e. CC ) ) |
| 5 | mulexp | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
|
| 6 | 5 | 3expa | |- ( ( ( A e. CC /\ B e. CC ) /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 7 | 4 6 | sylan | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 8 | simplll | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
|
| 9 | simplrl | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> B e. CC ) |
|
| 10 | 8 9 | mulcld | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A x. B ) e. CC ) |
| 11 | recn | |- ( N e. RR -> N e. CC ) |
|
| 12 | 11 | ad2antrl | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 13 | nnnn0 | |- ( -u N e. NN -> -u N e. NN0 ) |
|
| 14 | 13 | ad2antll | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 15 | expneg2 | |- ( ( ( A x. B ) e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
|
| 16 | 10 12 14 15 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ N ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
| 17 | expneg2 | |- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
|
| 18 | 8 12 14 17 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 19 | expneg2 | |- ( ( B e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
|
| 20 | 9 12 14 19 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ N ) = ( 1 / ( B ^ -u N ) ) ) |
| 21 | 18 20 | oveq12d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ N ) x. ( B ^ N ) ) = ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) ) |
| 22 | mulexp | |- ( ( A e. CC /\ B e. CC /\ -u N e. NN0 ) -> ( ( A x. B ) ^ -u N ) = ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
|
| 23 | 8 9 14 22 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ -u N ) = ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
| 24 | 23 | oveq2d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( 1 / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 25 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 26 | 25 | oveq1i | |- ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) = ( 1 / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) |
| 27 | 24 26 | eqtr4di | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 28 | expcl | |- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
|
| 29 | 8 14 28 | syl2anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) e. CC ) |
| 30 | simpllr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
|
| 31 | nnz | |- ( -u N e. NN -> -u N e. ZZ ) |
|
| 32 | 31 | ad2antll | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 33 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
|
| 34 | 8 30 32 33 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) =/= 0 ) |
| 35 | expcl | |- ( ( B e. CC /\ -u N e. NN0 ) -> ( B ^ -u N ) e. CC ) |
|
| 36 | 9 14 35 | syl2anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ -u N ) e. CC ) |
| 37 | simplrr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> B =/= 0 ) |
|
| 38 | expne0i | |- ( ( B e. CC /\ B =/= 0 /\ -u N e. ZZ ) -> ( B ^ -u N ) =/= 0 ) |
|
| 39 | 9 37 32 38 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( B ^ -u N ) =/= 0 ) |
| 40 | ax-1cn | |- 1 e. CC |
|
| 41 | divmuldiv | |- ( ( ( 1 e. CC /\ 1 e. CC ) /\ ( ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) /\ ( ( B ^ -u N ) e. CC /\ ( B ^ -u N ) =/= 0 ) ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
|
| 42 | 40 40 41 | mpanl12 | |- ( ( ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) /\ ( ( B ^ -u N ) e. CC /\ ( B ^ -u N ) =/= 0 ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 43 | 29 34 36 39 42 | syl22anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u N ) x. ( B ^ -u N ) ) ) ) |
| 44 | 27 43 | eqtr4d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( ( A x. B ) ^ -u N ) ) = ( ( 1 / ( A ^ -u N ) ) x. ( 1 / ( B ^ -u N ) ) ) ) |
| 45 | 21 44 | eqtr4d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ N ) x. ( B ^ N ) ) = ( 1 / ( ( A x. B ) ^ -u N ) ) ) |
| 46 | 16 45 | eqtr4d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 47 | 7 46 | jaodan | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 48 | 1 47 | sylan2b | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) /\ N e. ZZ ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 49 | 48 | 3impa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ N e. ZZ ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |