This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expval | |- ( ( A e. CC /\ N e. ZZ ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( x = A /\ y = N ) -> y = N ) |
|
| 2 | 1 | eqeq1d | |- ( ( x = A /\ y = N ) -> ( y = 0 <-> N = 0 ) ) |
| 3 | 1 | breq2d | |- ( ( x = A /\ y = N ) -> ( 0 < y <-> 0 < N ) ) |
| 4 | simpl | |- ( ( x = A /\ y = N ) -> x = A ) |
|
| 5 | 4 | sneqd | |- ( ( x = A /\ y = N ) -> { x } = { A } ) |
| 6 | 5 | xpeq2d | |- ( ( x = A /\ y = N ) -> ( NN X. { x } ) = ( NN X. { A } ) ) |
| 7 | 6 | seqeq3d | |- ( ( x = A /\ y = N ) -> seq 1 ( x. , ( NN X. { x } ) ) = seq 1 ( x. , ( NN X. { A } ) ) ) |
| 8 | 7 1 | fveq12d | |- ( ( x = A /\ y = N ) -> ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 9 | 1 | negeqd | |- ( ( x = A /\ y = N ) -> -u y = -u N ) |
| 10 | 7 9 | fveq12d | |- ( ( x = A /\ y = N ) -> ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) |
| 11 | 10 | oveq2d | |- ( ( x = A /\ y = N ) -> ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) |
| 12 | 3 8 11 | ifbieq12d | |- ( ( x = A /\ y = N ) -> if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) = if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) |
| 13 | 2 12 | ifbieq2d | |- ( ( x = A /\ y = N ) -> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
| 14 | df-exp | |- ^ = ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) ) |
|
| 15 | 1ex | |- 1 e. _V |
|
| 16 | fvex | |- ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) e. _V |
|
| 17 | ovex | |- ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) e. _V |
|
| 18 | 16 17 | ifex | |- if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) e. _V |
| 19 | 15 18 | ifex | |- if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) e. _V |
| 20 | 13 14 19 | ovmpoa | |- ( ( A e. CC /\ N e. ZZ ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |