This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expdiv | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divrec | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
|
| 2 | 1 | 3expb | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 4 | 3 | oveq1d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A / B ) ^ N ) = ( ( A x. ( 1 / B ) ) ^ N ) ) |
| 5 | reccl | |- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
|
| 6 | mulexp | |- ( ( A e. CC /\ ( 1 / B ) e. CC /\ N e. NN0 ) -> ( ( A x. ( 1 / B ) ) ^ N ) = ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) ) |
|
| 7 | 5 6 | syl3an2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A x. ( 1 / B ) ) ^ N ) = ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) ) |
| 8 | simp2l | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> B e. CC ) |
|
| 9 | simp2r | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> B =/= 0 ) |
|
| 10 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 11 | 10 | 3ad2ant3 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> N e. ZZ ) |
| 12 | exprec | |- ( ( B e. CC /\ B =/= 0 /\ N e. ZZ ) -> ( ( 1 / B ) ^ N ) = ( 1 / ( B ^ N ) ) ) |
|
| 13 | 8 9 11 12 | syl3anc | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( 1 / B ) ^ N ) = ( 1 / ( B ^ N ) ) ) |
| 14 | 13 | oveq2d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) = ( ( A ^ N ) x. ( 1 / ( B ^ N ) ) ) ) |
| 15 | expcl | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
|
| 16 | 15 | 3adant2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
| 17 | expcl | |- ( ( B e. CC /\ N e. NN0 ) -> ( B ^ N ) e. CC ) |
|
| 18 | 17 | adantlr | |- ( ( ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( B ^ N ) e. CC ) |
| 19 | 18 | 3adant1 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( B ^ N ) e. CC ) |
| 20 | expne0i | |- ( ( B e. CC /\ B =/= 0 /\ N e. ZZ ) -> ( B ^ N ) =/= 0 ) |
|
| 21 | 8 9 11 20 | syl3anc | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( B ^ N ) =/= 0 ) |
| 22 | 16 19 21 | divrecd | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A ^ N ) / ( B ^ N ) ) = ( ( A ^ N ) x. ( 1 / ( B ^ N ) ) ) ) |
| 23 | 14 22 | eqtr4d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) = ( ( A ^ N ) / ( B ^ N ) ) ) |
| 24 | 4 7 23 | 3eqtrd | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) ) |