This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expdiv | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 4 | 3 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 · ( 1 / 𝐵 ) ) ↑ 𝑁 ) ) |
| 5 | reccl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) | |
| 6 | mulexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 𝐵 ) ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 · ( 1 / 𝐵 ) ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( ( 1 / 𝐵 ) ↑ 𝑁 ) ) ) | |
| 7 | 5 6 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 · ( 1 / 𝐵 ) ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( ( 1 / 𝐵 ) ↑ 𝑁 ) ) ) |
| 8 | simp2l | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) | |
| 9 | simp2r | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ≠ 0 ) | |
| 10 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 12 | exprec | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 1 / 𝐵 ) ↑ 𝑁 ) = ( 1 / ( 𝐵 ↑ 𝑁 ) ) ) | |
| 13 | 8 9 11 12 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 / 𝐵 ) ↑ 𝑁 ) = ( 1 / ( 𝐵 ↑ 𝑁 ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑁 ) · ( ( 1 / 𝐵 ) ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) · ( 1 / ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 15 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) | |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 17 | expcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) | |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 19 | 18 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 20 | expne0i | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐵 ↑ 𝑁 ) ≠ 0 ) | |
| 21 | 8 9 11 20 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ≠ 0 ) |
| 22 | 16 19 21 | divrecd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) · ( 1 / ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 23 | 14 22 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑁 ) · ( ( 1 / 𝐵 ) ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |
| 24 | 4 7 23 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |