This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Instance of sategoelfv for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sategoelfvb.s | |- E = ( M SatE ( A e.g B ) ) |
|
| ex-sategoelel.s | |- S = ( x e. _om |-> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) ) |
||
| Assertion | ex-sategoel | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S ` A ) e. ( S ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sategoelfvb.s | |- E = ( M SatE ( A e.g B ) ) |
|
| 2 | ex-sategoelel.s | |- S = ( x e. _om |-> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) ) |
|
| 3 | simpll | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> M e. WUni ) |
|
| 4 | 3simpa | |- ( ( A e. _om /\ B e. _om /\ A =/= B ) -> ( A e. _om /\ B e. _om ) ) |
|
| 5 | 4 | adantl | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( A e. _om /\ B e. _om ) ) |
| 6 | 1 2 | ex-sategoelel | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> S e. E ) |
| 7 | 1 | sategoelfv | |- ( ( M e. WUni /\ ( A e. _om /\ B e. _om ) /\ S e. E ) -> ( S ` A ) e. ( S ` B ) ) |
| 8 | 3 5 6 7 | syl3anc | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S ` A ) e. ( S ` B ) ) |