This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-res . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-res | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( F |` B ) = { <. 2 , 6 >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> F = { <. 2 , 6 >. , <. 3 , 9 >. } ) |
|
| 2 | df-pr | |- { <. 2 , 6 >. , <. 3 , 9 >. } = ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) |
|
| 3 | 1 2 | eqtrdi | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> F = ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) ) |
| 4 | 3 | reseq1d | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( F |` B ) = ( ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) |` B ) ) |
| 5 | resundir | |- ( ( { <. 2 , 6 >. } u. { <. 3 , 9 >. } ) |` B ) = ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) |
|
| 6 | 4 5 | eqtrdi | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( F |` B ) = ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) ) |
| 7 | 2re | |- 2 e. RR |
|
| 8 | 7 | elexi | |- 2 e. _V |
| 9 | 6re | |- 6 e. RR |
|
| 10 | 9 | elexi | |- 6 e. _V |
| 11 | 8 10 | relsnop | |- Rel { <. 2 , 6 >. } |
| 12 | dmsnopss | |- dom { <. 2 , 6 >. } C_ { 2 } |
|
| 13 | snsspr2 | |- { 2 } C_ { 1 , 2 } |
|
| 14 | simpr | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> B = { 1 , 2 } ) |
|
| 15 | 13 14 | sseqtrrid | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> { 2 } C_ B ) |
| 16 | 12 15 | sstrid | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> dom { <. 2 , 6 >. } C_ B ) |
| 17 | relssres | |- ( ( Rel { <. 2 , 6 >. } /\ dom { <. 2 , 6 >. } C_ B ) -> ( { <. 2 , 6 >. } |` B ) = { <. 2 , 6 >. } ) |
|
| 18 | 11 16 17 | sylancr | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( { <. 2 , 6 >. } |` B ) = { <. 2 , 6 >. } ) |
| 19 | 1re | |- 1 e. RR |
|
| 20 | 1lt3 | |- 1 < 3 |
|
| 21 | 19 20 | gtneii | |- 3 =/= 1 |
| 22 | 2lt3 | |- 2 < 3 |
|
| 23 | 7 22 | gtneii | |- 3 =/= 2 |
| 24 | 21 23 | nelpri | |- -. 3 e. { 1 , 2 } |
| 25 | 14 | eleq2d | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( 3 e. B <-> 3 e. { 1 , 2 } ) ) |
| 26 | 24 25 | mtbiri | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> -. 3 e. B ) |
| 27 | ressnop0 | |- ( -. 3 e. B -> ( { <. 3 , 9 >. } |` B ) = (/) ) |
|
| 28 | 26 27 | syl | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( { <. 3 , 9 >. } |` B ) = (/) ) |
| 29 | 18 28 | uneq12d | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) = ( { <. 2 , 6 >. } u. (/) ) ) |
| 30 | un0 | |- ( { <. 2 , 6 >. } u. (/) ) = { <. 2 , 6 >. } |
|
| 31 | 29 30 | eqtrdi | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( ( { <. 2 , 6 >. } |` B ) u. ( { <. 3 , 9 >. } |` B ) ) = { <. 2 , 6 >. } ) |
| 32 | 6 31 | eqtrd | |- ( ( F = { <. 2 , 6 >. , <. 3 , 9 >. } /\ B = { 1 , 2 } ) -> ( F |` B ) = { <. 2 , 6 >. } ) |