This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formalized example provided in the comment for fpar . (Contributed by AV, 3-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ex-fpar.h | ⊢ 𝐻 = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) | |
| ex-fpar.a | ⊢ 𝐴 = ( 0 [,) +∞ ) | ||
| ex-fpar.b | ⊢ 𝐵 = ℝ | ||
| ex-fpar.f | ⊢ 𝐹 = ( √ ↾ 𝐴 ) | ||
| ex-fpar.g | ⊢ 𝐺 = ( sin ↾ 𝐵 ) | ||
| Assertion | ex-fpar | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( + ∘ 𝐻 ) 𝑌 ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-fpar.h | ⊢ 𝐻 = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) | |
| 2 | ex-fpar.a | ⊢ 𝐴 = ( 0 [,) +∞ ) | |
| 3 | ex-fpar.b | ⊢ 𝐵 = ℝ | |
| 4 | ex-fpar.f | ⊢ 𝐹 = ( √ ↾ 𝐴 ) | |
| 5 | ex-fpar.g | ⊢ 𝐺 = ( sin ↾ 𝐵 ) | |
| 6 | df-ov | ⊢ ( 𝑋 ( + ∘ 𝐻 ) 𝑌 ) = ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 7 | sqrtf | ⊢ √ : ℂ ⟶ ℂ | |
| 8 | ffn | ⊢ ( √ : ℂ ⟶ ℂ → √ Fn ℂ ) | |
| 9 | 7 8 | ax-mp | ⊢ √ Fn ℂ |
| 10 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 11 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 12 | 10 11 | sstri | ⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 13 | fnssres | ⊢ ( ( √ Fn ℂ ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → ( √ ↾ ( 0 [,) +∞ ) ) Fn ( 0 [,) +∞ ) ) | |
| 14 | 2 | reseq2i | ⊢ ( √ ↾ 𝐴 ) = ( √ ↾ ( 0 [,) +∞ ) ) |
| 15 | 14 | fneq1i | ⊢ ( ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ↔ ( √ ↾ ( 0 [,) +∞ ) ) Fn ( 0 [,) +∞ ) ) |
| 16 | 13 15 | sylibr | ⊢ ( ( √ Fn ℂ ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ) |
| 17 | 9 12 16 | mp2an | ⊢ ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) |
| 18 | id | ⊢ ( 𝐹 = ( √ ↾ 𝐴 ) → 𝐹 = ( √ ↾ 𝐴 ) ) | |
| 19 | 2 | a1i | ⊢ ( 𝐹 = ( √ ↾ 𝐴 ) → 𝐴 = ( 0 [,) +∞ ) ) |
| 20 | 18 19 | fneq12d | ⊢ ( 𝐹 = ( √ ↾ 𝐴 ) → ( 𝐹 Fn 𝐴 ↔ ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ) ) |
| 21 | 4 20 | ax-mp | ⊢ ( 𝐹 Fn 𝐴 ↔ ( √ ↾ 𝐴 ) Fn ( 0 [,) +∞ ) ) |
| 22 | 17 21 | mpbir | ⊢ 𝐹 Fn 𝐴 |
| 23 | sinf | ⊢ sin : ℂ ⟶ ℂ | |
| 24 | ffn | ⊢ ( sin : ℂ ⟶ ℂ → sin Fn ℂ ) | |
| 25 | 23 24 | ax-mp | ⊢ sin Fn ℂ |
| 26 | fnssres | ⊢ ( ( sin Fn ℂ ∧ ℝ ⊆ ℂ ) → ( sin ↾ ℝ ) Fn ℝ ) | |
| 27 | 3 | reseq2i | ⊢ ( sin ↾ 𝐵 ) = ( sin ↾ ℝ ) |
| 28 | 27 | fneq1i | ⊢ ( ( sin ↾ 𝐵 ) Fn ℝ ↔ ( sin ↾ ℝ ) Fn ℝ ) |
| 29 | 26 28 | sylibr | ⊢ ( ( sin Fn ℂ ∧ ℝ ⊆ ℂ ) → ( sin ↾ 𝐵 ) Fn ℝ ) |
| 30 | 25 11 29 | mp2an | ⊢ ( sin ↾ 𝐵 ) Fn ℝ |
| 31 | id | ⊢ ( 𝐺 = ( sin ↾ 𝐵 ) → 𝐺 = ( sin ↾ 𝐵 ) ) | |
| 32 | 3 | a1i | ⊢ ( 𝐺 = ( sin ↾ 𝐵 ) → 𝐵 = ℝ ) |
| 33 | 31 32 | fneq12d | ⊢ ( 𝐺 = ( sin ↾ 𝐵 ) → ( 𝐺 Fn 𝐵 ↔ ( sin ↾ 𝐵 ) Fn ℝ ) ) |
| 34 | 5 33 | ax-mp | ⊢ ( 𝐺 Fn 𝐵 ↔ ( sin ↾ 𝐵 ) Fn ℝ ) |
| 35 | 30 34 | mpbir | ⊢ 𝐺 Fn 𝐵 |
| 36 | 1 | fpar | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) ) |
| 37 | 22 35 36 | mp2an | ⊢ 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) |
| 38 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V | |
| 39 | 37 38 | fnmpoi | ⊢ 𝐻 Fn ( 𝐴 × 𝐵 ) |
| 40 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) | |
| 41 | fvco2 | ⊢ ( ( 𝐻 Fn ( 𝐴 × 𝐵 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) → ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( + ‘ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) | |
| 42 | 39 40 41 | sylancr | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( + ‘ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
| 43 | simpl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) | |
| 44 | simpr | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 45 | 37 43 44 | fvproj | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |
| 46 | 45 | fveq2d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( + ‘ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( + ‘ 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) ) |
| 47 | df-ov | ⊢ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐺 ‘ 𝑌 ) ) = ( + ‘ 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) | |
| 48 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝑋 ) = ( ( √ ↾ 𝐴 ) ‘ 𝑋 ) |
| 49 | fvres | ⊢ ( 𝑋 ∈ 𝐴 → ( ( √ ↾ 𝐴 ) ‘ 𝑋 ) = ( √ ‘ 𝑋 ) ) | |
| 50 | 48 49 | eqtrid | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝐹 ‘ 𝑋 ) = ( √ ‘ 𝑋 ) ) |
| 51 | 5 | fveq1i | ⊢ ( 𝐺 ‘ 𝑌 ) = ( ( sin ↾ 𝐵 ) ‘ 𝑌 ) |
| 52 | fvres | ⊢ ( 𝑌 ∈ 𝐵 → ( ( sin ↾ 𝐵 ) ‘ 𝑌 ) = ( sin ‘ 𝑌 ) ) | |
| 53 | 51 52 | eqtrid | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝐺 ‘ 𝑌 ) = ( sin ‘ 𝑌 ) ) |
| 54 | 50 53 | oveqan12d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐺 ‘ 𝑌 ) ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |
| 55 | 47 54 | eqtr3id | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( + ‘ 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |
| 56 | 42 46 55 | 3eqtrd | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( + ∘ 𝐻 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |
| 57 | 6 56 | eqtrid | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( + ∘ 𝐻 ) 𝑌 ) = ( ( √ ‘ 𝑋 ) + ( sin ‘ 𝑌 ) ) ) |