This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems using evlvvval . Version of evlsvvvallem2 using df-evl . (Contributed by SN, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlvvvallem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| evlvvvallem.p | |- P = ( I mPoly R ) |
||
| evlvvvallem.b | |- B = ( Base ` P ) |
||
| evlvvvallem.k | |- K = ( Base ` R ) |
||
| evlvvvallem.m | |- M = ( mulGrp ` R ) |
||
| evlvvvallem.w | |- .^ = ( .g ` M ) |
||
| evlvvvallem.x | |- .x. = ( .r ` R ) |
||
| evlvvvallem.i | |- ( ph -> I e. V ) |
||
| evlvvvallem.r | |- ( ph -> R e. CRing ) |
||
| evlvvvallem.f | |- ( ph -> F e. B ) |
||
| evlvvvallem.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| Assertion | evlvvvallem | |- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlvvvallem.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 2 | evlvvvallem.p | |- P = ( I mPoly R ) |
|
| 3 | evlvvvallem.b | |- B = ( Base ` P ) |
|
| 4 | evlvvvallem.k | |- K = ( Base ` R ) |
|
| 5 | evlvvvallem.m | |- M = ( mulGrp ` R ) |
|
| 6 | evlvvvallem.w | |- .^ = ( .g ` M ) |
|
| 7 | evlvvvallem.x | |- .x. = ( .r ` R ) |
|
| 8 | evlvvvallem.i | |- ( ph -> I e. V ) |
|
| 9 | evlvvvallem.r | |- ( ph -> R e. CRing ) |
|
| 10 | evlvvvallem.f | |- ( ph -> F e. B ) |
|
| 11 | evlvvvallem.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 12 | eqid | |- ( I mPoly ( R |`s K ) ) = ( I mPoly ( R |`s K ) ) |
|
| 13 | eqid | |- ( R |`s K ) = ( R |`s K ) |
|
| 14 | eqid | |- ( Base ` ( I mPoly ( R |`s K ) ) ) = ( Base ` ( I mPoly ( R |`s K ) ) ) |
|
| 15 | 9 | crngringd | |- ( ph -> R e. Ring ) |
| 16 | 4 | subrgid | |- ( R e. Ring -> K e. ( SubRing ` R ) ) |
| 17 | 15 16 | syl | |- ( ph -> K e. ( SubRing ` R ) ) |
| 18 | 4 | ressid | |- ( R e. CRing -> ( R |`s K ) = R ) |
| 19 | 9 18 | syl | |- ( ph -> ( R |`s K ) = R ) |
| 20 | 19 | oveq2d | |- ( ph -> ( I mPoly ( R |`s K ) ) = ( I mPoly R ) ) |
| 21 | 20 2 | eqtr4di | |- ( ph -> ( I mPoly ( R |`s K ) ) = P ) |
| 22 | 21 | fveq2d | |- ( ph -> ( Base ` ( I mPoly ( R |`s K ) ) ) = ( Base ` P ) ) |
| 23 | 22 3 | eqtr4di | |- ( ph -> ( Base ` ( I mPoly ( R |`s K ) ) ) = B ) |
| 24 | 10 23 | eleqtrrd | |- ( ph -> F e. ( Base ` ( I mPoly ( R |`s K ) ) ) ) |
| 25 | 1 12 13 14 4 5 6 7 8 9 17 24 11 | evlsvvvallem2 | |- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` R ) ) |