This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems using evlvvval . Version of evlsvvvallem2 using df-evl . (Contributed by SN, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlvvvallem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| evlvvvallem.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| evlvvvallem.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlvvvallem.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| evlvvvallem.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | ||
| evlvvvallem.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlvvvallem.x | ⊢ · = ( .r ‘ 𝑅 ) | ||
| evlvvvallem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlvvvallem.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlvvvallem.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| evlvvvallem.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlvvvallem | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlvvvallem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 2 | evlvvvallem.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | evlvvvallem.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | evlvvvallem.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 5 | evlvvvallem.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 6 | evlvvvallem.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 7 | evlvvvallem.x | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | evlvvvallem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 9 | evlvvvallem.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 10 | evlvvvallem.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 11 | evlvvvallem.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 12 | eqid | ⊢ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) = ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) | |
| 13 | eqid | ⊢ ( 𝑅 ↾s 𝐾 ) = ( 𝑅 ↾s 𝐾 ) | |
| 14 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) | |
| 15 | 9 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 16 | 4 | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐾 ∈ ( SubRing ‘ 𝑅 ) ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ 𝑅 ) ) |
| 18 | 4 | ressid | ⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐾 ) = 𝑅 ) |
| 19 | 9 18 | syl | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝐾 ) = 𝑅 ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) = ( 𝐼 mPoly 𝑅 ) ) |
| 21 | 20 2 | eqtr4di | ⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) = 𝑃 ) |
| 22 | 21 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) = ( Base ‘ 𝑃 ) ) |
| 23 | 22 3 | eqtr4di | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) = 𝐵 ) |
| 24 | 10 23 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s 𝐾 ) ) ) ) |
| 25 | 1 12 13 14 4 5 6 7 8 9 17 24 11 | evlsvvvallem2 | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |