This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. (Contributed by SN, 5-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlvvval.q | |- Q = ( I eval R ) |
|
| evlvvval.p | |- P = ( I mPoly R ) |
||
| evlvvval.b | |- B = ( Base ` P ) |
||
| evlvvval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| evlvvval.k | |- K = ( Base ` R ) |
||
| evlvvval.m | |- M = ( mulGrp ` R ) |
||
| evlvvval.w | |- .^ = ( .g ` M ) |
||
| evlvvval.x | |- .x. = ( .r ` R ) |
||
| evlvvval.i | |- ( ph -> I e. V ) |
||
| evlvvval.r | |- ( ph -> R e. CRing ) |
||
| evlvvval.f | |- ( ph -> F e. B ) |
||
| evlvvval.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| Assertion | evlvvval | |- ( ph -> ( ( Q ` F ) ` A ) = ( R gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlvvval.q | |- Q = ( I eval R ) |
|
| 2 | evlvvval.p | |- P = ( I mPoly R ) |
|
| 3 | evlvvval.b | |- B = ( Base ` P ) |
|
| 4 | evlvvval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 5 | evlvvval.k | |- K = ( Base ` R ) |
|
| 6 | evlvvval.m | |- M = ( mulGrp ` R ) |
|
| 7 | evlvvval.w | |- .^ = ( .g ` M ) |
|
| 8 | evlvvval.x | |- .x. = ( .r ` R ) |
|
| 9 | evlvvval.i | |- ( ph -> I e. V ) |
|
| 10 | evlvvval.r | |- ( ph -> R e. CRing ) |
|
| 11 | evlvvval.f | |- ( ph -> F e. B ) |
|
| 12 | evlvvval.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 13 | eqid | |- ( ( I evalSub R ) ` ( Base ` R ) ) = ( ( I evalSub R ) ` ( Base ` R ) ) |
|
| 14 | eqid | |- ( I mPoly ( R |`s ( Base ` R ) ) ) = ( I mPoly ( R |`s ( Base ` R ) ) ) |
|
| 15 | eqid | |- ( R |`s ( Base ` R ) ) = ( R |`s ( Base ` R ) ) |
|
| 16 | eqid | |- ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) = ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) |
|
| 17 | 10 | crngringd | |- ( ph -> R e. Ring ) |
| 18 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 19 | 18 | subrgid | |- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 20 | 17 19 | syl | |- ( ph -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 21 | 18 | ressid | |- ( R e. CRing -> ( R |`s ( Base ` R ) ) = R ) |
| 22 | 10 21 | syl | |- ( ph -> ( R |`s ( Base ` R ) ) = R ) |
| 23 | 22 | oveq2d | |- ( ph -> ( I mPoly ( R |`s ( Base ` R ) ) ) = ( I mPoly R ) ) |
| 24 | 23 2 | eqtr4di | |- ( ph -> ( I mPoly ( R |`s ( Base ` R ) ) ) = P ) |
| 25 | 24 | fveq2d | |- ( ph -> ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) = ( Base ` P ) ) |
| 26 | 25 3 | eqtr4di | |- ( ph -> ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) = B ) |
| 27 | 11 26 | eleqtrrd | |- ( ph -> F e. ( Base ` ( I mPoly ( R |`s ( Base ` R ) ) ) ) ) |
| 28 | 13 1 14 15 16 9 10 20 27 | evlsevl | |- ( ph -> ( ( ( I evalSub R ) ` ( Base ` R ) ) ` F ) = ( Q ` F ) ) |
| 29 | 28 | fveq1d | |- ( ph -> ( ( ( ( I evalSub R ) ` ( Base ` R ) ) ` F ) ` A ) = ( ( Q ` F ) ` A ) ) |
| 30 | 13 14 16 15 4 5 6 7 8 9 10 20 27 12 | evlsvvval | |- ( ph -> ( ( ( ( I evalSub R ) ` ( Base ` R ) ) ` F ) ` A ) = ( R gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
| 31 | 29 30 | eqtr3d | |- ( ph -> ( ( Q ` F ) ` A ) = ( R gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |