This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlvar.q | |- Q = ( I eval S ) |
|
| evlvar.v | |- V = ( I mVar S ) |
||
| evlvar.b | |- B = ( Base ` S ) |
||
| evlvar.i | |- ( ph -> I e. W ) |
||
| evlvar.s | |- ( ph -> S e. CRing ) |
||
| evlvar.x | |- ( ph -> X e. I ) |
||
| Assertion | evlvar | |- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlvar.q | |- Q = ( I eval S ) |
|
| 2 | evlvar.v | |- V = ( I mVar S ) |
|
| 3 | evlvar.b | |- B = ( Base ` S ) |
|
| 4 | evlvar.i | |- ( ph -> I e. W ) |
|
| 5 | evlvar.s | |- ( ph -> S e. CRing ) |
|
| 6 | evlvar.x | |- ( ph -> X e. I ) |
|
| 7 | eqid | |- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
|
| 8 | eqid | |- ( I mVar ( S |`s B ) ) = ( I mVar ( S |`s B ) ) |
|
| 9 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 10 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 11 | 3 | subrgid | |- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 12 | 5 10 11 | 3syl | |- ( ph -> B e. ( SubRing ` S ) ) |
| 13 | 7 1 8 9 3 4 5 12 6 | evlsvarsrng | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( Q ` ( ( I mVar ( S |`s B ) ) ` X ) ) ) |
| 14 | 7 8 9 3 4 5 12 6 | evlsvar | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 15 | 2 4 12 9 | subrgmvr | |- ( ph -> V = ( I mVar ( S |`s B ) ) ) |
| 16 | 15 | fveq1d | |- ( ph -> ( V ` X ) = ( ( I mVar ( S |`s B ) ) ` X ) ) |
| 17 | 16 | eqcomd | |- ( ph -> ( ( I mVar ( S |`s B ) ) ` X ) = ( V ` X ) ) |
| 18 | 17 | fveq2d | |- ( ph -> ( Q ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( Q ` ( V ` X ) ) ) |
| 19 | 13 14 18 | 3eqtr3rd | |- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |