This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlvar.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| evlvar.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑆 ) | ||
| evlvar.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlvar.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| evlvar.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlvar.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | evlvar | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlvar.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| 2 | evlvar.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑆 ) | |
| 3 | evlvar.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | evlvar.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | evlvar.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 6 | evlvar.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 7 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) | |
| 8 | eqid | ⊢ ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) | |
| 9 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 10 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 11 | 3 | subrgid | ⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 12 | 5 10 11 | 3syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 13 | 7 1 8 9 3 4 5 12 6 | evlsvarsrng | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) = ( 𝑄 ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) ) |
| 14 | 7 8 9 3 4 5 12 6 | evlsvar | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
| 15 | 2 4 12 9 | subrgmvr | ⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ) |
| 16 | 15 | fveq1d | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) = ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) |
| 17 | 16 | eqcomd | ⊢ ( 𝜑 → ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) = ( 𝑉 ‘ 𝑋 ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) = ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
| 19 | 13 14 18 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |