This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsca.q | |- Q = ( I eval S ) |
|
| evlsca.w | |- W = ( I mPoly S ) |
||
| evlsca.b | |- B = ( Base ` S ) |
||
| evlsca.a | |- A = ( algSc ` W ) |
||
| evlsca.i | |- ( ph -> I e. V ) |
||
| evlsca.s | |- ( ph -> S e. CRing ) |
||
| evlsca.x | |- ( ph -> X e. B ) |
||
| Assertion | evlsca | |- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsca.q | |- Q = ( I eval S ) |
|
| 2 | evlsca.w | |- W = ( I mPoly S ) |
|
| 3 | evlsca.b | |- B = ( Base ` S ) |
|
| 4 | evlsca.a | |- A = ( algSc ` W ) |
|
| 5 | evlsca.i | |- ( ph -> I e. V ) |
|
| 6 | evlsca.s | |- ( ph -> S e. CRing ) |
|
| 7 | evlsca.x | |- ( ph -> X e. B ) |
|
| 8 | eqid | |- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
|
| 9 | eqid | |- ( I mPoly ( S |`s B ) ) = ( I mPoly ( S |`s B ) ) |
|
| 10 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 11 | eqid | |- ( algSc ` ( I mPoly ( S |`s B ) ) ) = ( algSc ` ( I mPoly ( S |`s B ) ) ) |
|
| 12 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 13 | 3 | subrgid | |- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 14 | 6 12 13 | 3syl | |- ( ph -> B e. ( SubRing ` S ) ) |
| 15 | 8 1 9 10 2 3 11 4 5 6 14 7 | evlsscasrng | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) = ( Q ` ( A ` X ) ) ) |
| 16 | 8 9 10 3 11 5 6 14 7 | evlssca | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
| 17 | 15 16 | eqtr3d | |- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |