This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsca.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| evlsca.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑆 ) | ||
| evlsca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlsca.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evlsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | evlsca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsca.q | ⊢ 𝑄 = ( 𝐼 eval 𝑆 ) | |
| 2 | evlsca.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑆 ) | |
| 3 | evlsca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | evlsca.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 5 | evlsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | evlsca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 7 | evlsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) | |
| 9 | eqid | ⊢ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) | |
| 10 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 11 | eqid | ⊢ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) | |
| 12 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 13 | 3 | subrgid | ⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 14 | 6 12 13 | 3syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 15 | 8 1 9 10 2 3 11 4 5 6 14 7 | evlsscasrng | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
| 16 | 8 9 10 3 11 5 6 14 7 | evlssca | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 17 | 15 16 | eqtr3d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |