This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of the variable of univariate polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1varsrng.q | |- Q = ( S evalSub1 R ) |
|
| evls1varsrng.o | |- O = ( eval1 ` S ) |
||
| evls1varsrng.v | |- V = ( var1 ` U ) |
||
| evls1varsrng.u | |- U = ( S |`s R ) |
||
| evls1varsrng.b | |- B = ( Base ` S ) |
||
| evls1varsrng.s | |- ( ph -> S e. CRing ) |
||
| evls1varsrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| Assertion | evls1varsrng | |- ( ph -> ( Q ` V ) = ( O ` V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1varsrng.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1varsrng.o | |- O = ( eval1 ` S ) |
|
| 3 | evls1varsrng.v | |- V = ( var1 ` U ) |
|
| 4 | evls1varsrng.u | |- U = ( S |`s R ) |
|
| 5 | evls1varsrng.b | |- B = ( Base ` S ) |
|
| 6 | evls1varsrng.s | |- ( ph -> S e. CRing ) |
|
| 7 | evls1varsrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 8 | 1 3 4 5 6 7 | evls1var | |- ( ph -> ( Q ` V ) = ( _I |` B ) ) |
| 9 | 2 5 | evl1fval1 | |- O = ( S evalSub1 B ) |
| 10 | 9 | a1i | |- ( ph -> O = ( S evalSub1 B ) ) |
| 11 | 10 | fveq1d | |- ( ph -> ( O ` V ) = ( ( S evalSub1 B ) ` V ) ) |
| 12 | 3 | a1i | |- ( ph -> V = ( var1 ` U ) ) |
| 13 | eqid | |- ( var1 ` S ) = ( var1 ` S ) |
|
| 14 | 13 7 4 | subrgvr1 | |- ( ph -> ( var1 ` S ) = ( var1 ` U ) ) |
| 15 | 5 | ressid | |- ( S e. CRing -> ( S |`s B ) = S ) |
| 16 | 6 15 | syl | |- ( ph -> ( S |`s B ) = S ) |
| 17 | 16 | eqcomd | |- ( ph -> S = ( S |`s B ) ) |
| 18 | 17 | fveq2d | |- ( ph -> ( var1 ` S ) = ( var1 ` ( S |`s B ) ) ) |
| 19 | 12 14 18 | 3eqtr2d | |- ( ph -> V = ( var1 ` ( S |`s B ) ) ) |
| 20 | 19 | fveq2d | |- ( ph -> ( ( S evalSub1 B ) ` V ) = ( ( S evalSub1 B ) ` ( var1 ` ( S |`s B ) ) ) ) |
| 21 | eqid | |- ( S evalSub1 B ) = ( S evalSub1 B ) |
|
| 22 | eqid | |- ( var1 ` ( S |`s B ) ) = ( var1 ` ( S |`s B ) ) |
|
| 23 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 24 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 25 | 5 | subrgid | |- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 26 | 6 24 25 | 3syl | |- ( ph -> B e. ( SubRing ` S ) ) |
| 27 | 21 22 23 5 6 26 | evls1var | |- ( ph -> ( ( S evalSub1 B ) ` ( var1 ` ( S |`s B ) ) ) = ( _I |` B ) ) |
| 28 | 11 20 27 | 3eqtrrd | |- ( ph -> ( _I |` B ) = ( O ` V ) ) |
| 29 | 8 28 | eqtrd | |- ( ph -> ( Q ` V ) = ( O ` V ) ) |