This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of the variable of univariate polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1varsrng.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1varsrng.o | ⊢ 𝑂 = ( eval1 ‘ 𝑆 ) | ||
| evls1varsrng.v | ⊢ 𝑉 = ( var1 ‘ 𝑈 ) | ||
| evls1varsrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1varsrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evls1varsrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1varsrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| Assertion | evls1varsrng | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑉 ) = ( 𝑂 ‘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1varsrng.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1varsrng.o | ⊢ 𝑂 = ( eval1 ‘ 𝑆 ) | |
| 3 | evls1varsrng.v | ⊢ 𝑉 = ( var1 ‘ 𝑈 ) | |
| 4 | evls1varsrng.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evls1varsrng.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 6 | evls1varsrng.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 7 | evls1varsrng.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 8 | 1 3 4 5 6 7 | evls1var | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑉 ) = ( I ↾ 𝐵 ) ) |
| 9 | 2 5 | evl1fval1 | ⊢ 𝑂 = ( 𝑆 evalSub1 𝐵 ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 𝑂 = ( 𝑆 evalSub1 𝐵 ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑉 ) = ( ( 𝑆 evalSub1 𝐵 ) ‘ 𝑉 ) ) |
| 12 | 3 | a1i | ⊢ ( 𝜑 → 𝑉 = ( var1 ‘ 𝑈 ) ) |
| 13 | eqid | ⊢ ( var1 ‘ 𝑆 ) = ( var1 ‘ 𝑆 ) | |
| 14 | 13 7 4 | subrgvr1 | ⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) = ( var1 ‘ 𝑈 ) ) |
| 15 | 5 | ressid | ⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 17 | 16 | eqcomd | ⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) = ( var1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 19 | 12 14 18 | 3eqtr2d | ⊢ ( 𝜑 → 𝑉 = ( var1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ 𝑉 ) = ( ( 𝑆 evalSub1 𝐵 ) ‘ ( var1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) |
| 21 | eqid | ⊢ ( 𝑆 evalSub1 𝐵 ) = ( 𝑆 evalSub1 𝐵 ) | |
| 22 | eqid | ⊢ ( var1 ‘ ( 𝑆 ↾s 𝐵 ) ) = ( var1 ‘ ( 𝑆 ↾s 𝐵 ) ) | |
| 23 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 24 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 25 | 5 | subrgid | ⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 26 | 6 24 25 | 3syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 27 | 21 22 23 5 6 26 | evls1var | ⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ ( var1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) = ( I ↾ 𝐵 ) ) |
| 28 | 11 20 27 | 3eqtrrd | ⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( 𝑂 ‘ 𝑉 ) ) |
| 29 | 8 28 | eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑉 ) = ( 𝑂 ‘ 𝑉 ) ) |