This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1addd.q | |- O = ( eval1 ` R ) |
|
| evl1addd.p | |- P = ( Poly1 ` R ) |
||
| evl1addd.b | |- B = ( Base ` R ) |
||
| evl1addd.u | |- U = ( Base ` P ) |
||
| evl1addd.1 | |- ( ph -> R e. CRing ) |
||
| evl1addd.2 | |- ( ph -> Y e. B ) |
||
| evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
||
| evl1addd.4 | |- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) ) |
||
| evl1addd.g | |- .+b = ( +g ` P ) |
||
| evl1addd.a | |- .+ = ( +g ` R ) |
||
| Assertion | evl1addd | |- ( ph -> ( ( M .+b N ) e. U /\ ( ( O ` ( M .+b N ) ) ` Y ) = ( V .+ W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.q | |- O = ( eval1 ` R ) |
|
| 2 | evl1addd.p | |- P = ( Poly1 ` R ) |
|
| 3 | evl1addd.b | |- B = ( Base ` R ) |
|
| 4 | evl1addd.u | |- U = ( Base ` P ) |
|
| 5 | evl1addd.1 | |- ( ph -> R e. CRing ) |
|
| 6 | evl1addd.2 | |- ( ph -> Y e. B ) |
|
| 7 | evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
|
| 8 | evl1addd.4 | |- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) ) |
|
| 9 | evl1addd.g | |- .+b = ( +g ` P ) |
|
| 10 | evl1addd.a | |- .+ = ( +g ` R ) |
|
| 11 | eqid | |- ( R ^s B ) = ( R ^s B ) |
|
| 12 | 1 2 11 3 | evl1rhm | |- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
| 13 | 5 12 | syl | |- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
| 14 | rhmghm | |- ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( P GrpHom ( R ^s B ) ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> O e. ( P GrpHom ( R ^s B ) ) ) |
| 16 | ghmgrp1 | |- ( O e. ( P GrpHom ( R ^s B ) ) -> P e. Grp ) |
|
| 17 | 15 16 | syl | |- ( ph -> P e. Grp ) |
| 18 | 7 | simpld | |- ( ph -> M e. U ) |
| 19 | 8 | simpld | |- ( ph -> N e. U ) |
| 20 | 4 9 | grpcl | |- ( ( P e. Grp /\ M e. U /\ N e. U ) -> ( M .+b N ) e. U ) |
| 21 | 17 18 19 20 | syl3anc | |- ( ph -> ( M .+b N ) e. U ) |
| 22 | eqid | |- ( +g ` ( R ^s B ) ) = ( +g ` ( R ^s B ) ) |
|
| 23 | 4 9 22 | ghmlin | |- ( ( O e. ( P GrpHom ( R ^s B ) ) /\ M e. U /\ N e. U ) -> ( O ` ( M .+b N ) ) = ( ( O ` M ) ( +g ` ( R ^s B ) ) ( O ` N ) ) ) |
| 24 | 15 18 19 23 | syl3anc | |- ( ph -> ( O ` ( M .+b N ) ) = ( ( O ` M ) ( +g ` ( R ^s B ) ) ( O ` N ) ) ) |
| 25 | eqid | |- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
|
| 26 | 3 | fvexi | |- B e. _V |
| 27 | 26 | a1i | |- ( ph -> B e. _V ) |
| 28 | 4 25 | rhmf | |- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 29 | 13 28 | syl | |- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 30 | 29 18 | ffvelcdmd | |- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
| 31 | 29 19 | ffvelcdmd | |- ( ph -> ( O ` N ) e. ( Base ` ( R ^s B ) ) ) |
| 32 | 11 25 5 27 30 31 10 22 | pwsplusgval | |- ( ph -> ( ( O ` M ) ( +g ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF .+ ( O ` N ) ) ) |
| 33 | 24 32 | eqtrd | |- ( ph -> ( O ` ( M .+b N ) ) = ( ( O ` M ) oF .+ ( O ` N ) ) ) |
| 34 | 33 | fveq1d | |- ( ph -> ( ( O ` ( M .+b N ) ) ` Y ) = ( ( ( O ` M ) oF .+ ( O ` N ) ) ` Y ) ) |
| 35 | 11 3 25 5 27 30 | pwselbas | |- ( ph -> ( O ` M ) : B --> B ) |
| 36 | 35 | ffnd | |- ( ph -> ( O ` M ) Fn B ) |
| 37 | 11 3 25 5 27 31 | pwselbas | |- ( ph -> ( O ` N ) : B --> B ) |
| 38 | 37 | ffnd | |- ( ph -> ( O ` N ) Fn B ) |
| 39 | fnfvof | |- ( ( ( ( O ` M ) Fn B /\ ( O ` N ) Fn B ) /\ ( B e. _V /\ Y e. B ) ) -> ( ( ( O ` M ) oF .+ ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .+ ( ( O ` N ) ` Y ) ) ) |
|
| 40 | 36 38 27 6 39 | syl22anc | |- ( ph -> ( ( ( O ` M ) oF .+ ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .+ ( ( O ` N ) ` Y ) ) ) |
| 41 | 7 | simprd | |- ( ph -> ( ( O ` M ) ` Y ) = V ) |
| 42 | 8 | simprd | |- ( ph -> ( ( O ` N ) ` Y ) = W ) |
| 43 | 41 42 | oveq12d | |- ( ph -> ( ( ( O ` M ) ` Y ) .+ ( ( O ` N ) ` Y ) ) = ( V .+ W ) ) |
| 44 | 34 40 43 | 3eqtrd | |- ( ph -> ( ( O ` ( M .+b N ) ) ` Y ) = ( V .+ W ) ) |
| 45 | 21 44 | jca | |- ( ph -> ( ( M .+b N ) e. U /\ ( ( O ` ( M .+b N ) ) ` Y ) = ( V .+ W ) ) ) |