This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a univariate polynomial evaluation mapping the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1varpw.q | |- Q = ( eval1 ` R ) |
|
| evl1varpw.w | |- W = ( Poly1 ` R ) |
||
| evl1varpw.g | |- G = ( mulGrp ` W ) |
||
| evl1varpw.x | |- X = ( var1 ` R ) |
||
| evl1varpw.b | |- B = ( Base ` R ) |
||
| evl1varpw.e | |- .^ = ( .g ` G ) |
||
| evl1varpw.r | |- ( ph -> R e. CRing ) |
||
| evl1varpw.n | |- ( ph -> N e. NN0 ) |
||
| evl1varpwval.c | |- ( ph -> C e. B ) |
||
| evl1varpwval.h | |- H = ( mulGrp ` R ) |
||
| evl1varpwval.e | |- E = ( .g ` H ) |
||
| Assertion | evl1varpwval | |- ( ph -> ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1varpw.q | |- Q = ( eval1 ` R ) |
|
| 2 | evl1varpw.w | |- W = ( Poly1 ` R ) |
|
| 3 | evl1varpw.g | |- G = ( mulGrp ` W ) |
|
| 4 | evl1varpw.x | |- X = ( var1 ` R ) |
|
| 5 | evl1varpw.b | |- B = ( Base ` R ) |
|
| 6 | evl1varpw.e | |- .^ = ( .g ` G ) |
|
| 7 | evl1varpw.r | |- ( ph -> R e. CRing ) |
|
| 8 | evl1varpw.n | |- ( ph -> N e. NN0 ) |
|
| 9 | evl1varpwval.c | |- ( ph -> C e. B ) |
|
| 10 | evl1varpwval.h | |- H = ( mulGrp ` R ) |
|
| 11 | evl1varpwval.e | |- E = ( .g ` H ) |
|
| 12 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 13 | 1 4 5 2 12 7 9 | evl1vard | |- ( ph -> ( X e. ( Base ` W ) /\ ( ( Q ` X ) ` C ) = C ) ) |
| 14 | 3 | fveq2i | |- ( .g ` G ) = ( .g ` ( mulGrp ` W ) ) |
| 15 | 6 14 | eqtri | |- .^ = ( .g ` ( mulGrp ` W ) ) |
| 16 | 10 | fveq2i | |- ( .g ` H ) = ( .g ` ( mulGrp ` R ) ) |
| 17 | 11 16 | eqtri | |- E = ( .g ` ( mulGrp ` R ) ) |
| 18 | 1 2 5 12 7 9 13 15 17 8 | evl1expd | |- ( ph -> ( ( N .^ X ) e. ( Base ` W ) /\ ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) ) |
| 19 | 18 | simprd | |- ( ph -> ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) |